
Devising HDG methods for Stokes flow: An overview

Bernardo Cockburn a,⇑, Ke Shi b

a School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
b Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

a r t i c l e i n f o

Article history:
Received 29 August 2013
Received in revised form 29 October 2013
Accepted 9 November 2013
Available online 23 November 2013

Keywords:
Hybridizable discontinuous Galerkin
methods
Stokes equations
Unstructured meshes
Superconvergence
Divergence-free approximations

a b s t r a c t

We provide a short overview of our recent work on the devising of hybridizable discontinuous Galerkin
(HDG) methods for the Stokes equations of incompressible flow. First, we motivate and display the gen-
eral form of the methods and show that they provide a well defined approximate solution for arbitrary
polyhedral elements. We then discuss three different but equivalent formulations of the methods. Next,
we describe a systematic way of constructing superconvergent HDG methods by using, as building blocks,
the local spaces of superconvergent HDG methods for the Laplacian operator. This can be done, so far, for
simplexes, parallelepipeds and prisms. Finally, we show how, by means of an elementwise computation,
we can obtain divergence-free velocity approximations converging faster than the original velocity
approximation when working with simplicial elements. We end by briefly discussing other versions of
the methods, how to obtain HDG methods with H(div)-conforming velocity spaces, and how to extend
the methods to other related systems. Several open problems are described.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we give a short overview of our recent work on
the devising of hybridizable discontinuous Galerkin (HDG) meth-
ods for the velocity gradient–velocity–pressure formulation of
the Stokes equations, namely,

L�ru ¼ 0 on X; ð1aÞ

� r � ðmLÞ þ rp ¼ f on X; ð1bÞ

r � u ¼ 0 on X; ð1cÞ

u ¼ g on @X; ð1dÞZ
X

p ¼ 0; ð1eÞ

where
R
@X g � n ¼ 0. Here X � Rn (n ¼ 2;3) is a bounded polygonal

domain if n ¼ 2, and a Lipschitz polyhedral domain if n ¼ 3. We
assume that m is a constant and that f is smooth.

The paper is organized as follows. In Section 2, we begin by
describing the characterization of the exact solution the HDG
methods are obtained from. In Section 3, we use this characteriza-
tion to define the methods and display very simple conditions that,

for elements of arbitrary shape, ensure the existence and
uniqueness of their solution. Next, in Section 4, we provide three
different ways to presenting the methods according to which un-
knowns are considered independent and which ones dependent.
Then, in Section 5, a fairly general construction of superconvergent
methods in terms of superconvergent methods for the Laplace
operator is presented. These are methods for which, roughly speak-
ing, an elementwise post-processing of the velocity can be ob-
tained which converges faster than the original approximation.
Finally, in Section 6, restricting ourselves to simplicial elements,
we show how the above-mentioned postprocessing can be defined
which results in a globally divergence-free approximate velocity
converging faster that the original approximation. We end in Sec-
tion 7 by briefly considering other versions of the methods, by dis-
cussing a new way of obtaining method using HðdivÞ-conforming
velocity spaces, and by commenting on how to extend the methods
to other related systems.

2. The main idea for devising HDG methods

In this Section, we introduce a characterization of the exact
solution whose discrete version gives rise to the HDG methods. Gi-
ven any mesh T h, which, for simplicity we take to be conforming,
of the domain X, the characterization we seek states, roughly
speaking, that the exact solution solves local Stokes problems
which are suitably matched across inter-element boundaries. To
find it, we begin with a simple observation.
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2.1. A simple observation

Note that the exact solution satisfies the partial differential
equations

L�ru ¼ 0 on K;

�r � ðmLÞ þ rp ¼ f on K;

r � u ¼ 0 on K;

on each of the elements K of the mesh T h. Moreover, it satisfies the
transmission conditions

s� mLnþ pnt ¼ 0 on F;
su� nt ¼ 0 on F;

for all the faces F of each of the elements K 2 T h. Here, s � t on F de-
notes the jump across the inter-element boundary F, that is

s� mLnþ pnt :¼ �mL�n� þ p�n� � mLþnþ þ pþnþ;
su� nt :¼ u� � n� þ uþ � nþ;

where f� is the trace on the face F of the generic function f from
either of its sides. Finally, it satisfies Dirichlet boundary and global
average conditions

u ¼ g on @X;
Z

X
p ¼ 0:

Conversely, any function ðL;u; pÞ satisfying the above equations
on each of the elements K 2 T h, the transmission conditions on all
the faces F of K 2 T h and the Dirichlet and global average condi-
tions is nothing but the exact solution of the original problem.

2.2. Local and global problems

We are going now to use this simple result to obtain the char-
acterization we seek. We proceed as follows. For an arbitrary func-
tion û defined on the set of all faces F of the elements K of T h, Eh,
and any function �p defined on X and constant on each element K of
T h, we define the auxiliary function ðeL; ~u; ~pÞ as the solution of the
local problem

eL �r~u ¼ 0 on K; ð2aÞ
� r � ðmeLÞ þ r~p ¼ f on K; ð2bÞ

r � ~u ¼ 1
jKj

Z
@K

û � n on K; ð2cÞ

~u ¼ û on @K; ð2dÞ
1
K

Z
K

~p ¼ �p: ð2eÞ

Note that the divergence-free condition has to be modified for this
problem to be solvable for arbitrary functions û. If we want to keep
the equation r � ~u ¼ 0, the function û would have to satisfy the
compatibility condition

R
@K û � n̂ ¼ 0.

By the result in the previous subsection, the function ðû; �pÞ for
which ðeL; ~u; epÞ is nothing but the exact solution of the original
problem, ðL;u; pÞ, must be the solution of the global problem con-
sisting in the transmission condition

s� meLnþ epnt ¼ 0 on Eh n @X; ð3aÞ

the divergence-free conditionZ
@K

û � n ¼ 0 for K 2 T h; ð3bÞ

and the Dirichlet and global average conditions

û ¼ g on @X; ð3cÞZ
X

�p ¼ 0: ð3dÞ

Note that the second transmission condition, namely seu � nt ¼ 0 is
automatically satisfied since on Eh n @X because ~u ¼ û therein by
the boundary condition of the local problems, (2d).

2.3. Characterization of the exact solution

Thus, we have that the exact solution can be characterized as
the sum

ðL;u;pÞ ¼ ðLû;uû; pûÞ þ ðLf ;uf ;pf Þ þ ð0;0; �pÞ;

where we denote by ðLû;uû;pûÞ the solution ðeL; ~u; epÞ of the local
problem (2) with f :¼ 0 and �p :¼ 0, and by ðLf ;uf ;pf Þ the solution
ðeL; ~u; ~pÞ of the local problem (2) with û :¼ 0 and �p :¼ 0. Note that
the solution ðeL; ~u; ~pÞ of the local problem (2) with û :¼ 0 and
f :¼ 0 is ð0;0; �pÞ.

Moreover, the function ðû; �pÞ is the solution of the global prob-
lem (3) which, given the last identity, we can rewrite as follows:

� s� mLûnþ pûnt� s�pnt ¼ s� mLf nþ pf nt on Eh;Z
@K

û � n ¼ 0 for K 2 T h;

û ¼ g on @X;Z
X

�p ¼ 0:

This characterization of the exact solution is convenient for
devising numerical methods because any discrete version of it will
consist of local problems written in terms of approximations to
ðû; �pÞ; ðûh; �phÞ, and a single global problem for ðûh; �phÞ only. This al-
lows for a very efficient implementation of the method.

3. Definition of the HDG methods

In this Section, we introduce HDG methods by discretizing the
local problems (2) by discontinuous Galerkin methods, and by
enforcing the global problem (3) in a weak manner.

3.1. The approximating spaces

The HDG methods seek an approximation ðLh;uh; phÞ to the ex-
act solution ðLjX;ujX; pjXÞ in the finite dimensional space
Gh � Vh � Qh given by

Gh ¼ fG 2 L2ðT hÞ : GjK 2 GðKÞ 8 K 2 T hg; ð4aÞ
Vh ¼ fv 2 L2ðT hÞ : v jK 2 VðKÞ 8 K 2 T hg; ð4bÞ
Qh ¼ fq 2 L2ðT hÞ : qjK 2 QðKÞ 8 K 2 T hg; ð4cÞ

where the local spaces GðKÞ;VðKÞ;QðKÞ are general finite dimen-
sional spaces.

The HDG methods also seek an approximation ðûh; �phÞ to the ex-
act solution ðujEh

; �pÞ in the space Mh � Q 0
h where

Q0
h ¼ fq 2 L2ðT hÞ : qjK is a constant 8 K 2 T hg; ð5aÞ

Mh ¼ fl 2 L2ðEhÞ : ljF 2MðFÞ 8 F 2 Ehg; ð5bÞ

where the local space MðFÞ is a general finite dimensional space.

3.2. The local and the global problems

Writing ðf;gÞK for the integral over the element K of fg, and
hfgi@K for the corresponding integral over @K , it is not difficult to
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