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a b s t r a c t

This work presents a spatially and temporally second-order cell-centered Lagrangian formulation (CCH)
suitable for elasto-plastic materials on unstructured polyhedral cells in multiple dimensions. In the
development of our scheme, we follow a mimetic approach, based upon the finite volume method, as
a guide to the derivation of the difference equations. In doing so, we consider not only the governing
equations, but a number of ancillary relationships. The finite volume equations for solids are cast in
Lagrangian form with particular attention to the discrete form of the Second Law of Thermodynamics.
We expand upon previous work and propose a new entropy production expression. A new tensor dissi-
pation model is presented that guarantees the viscous stress tensor is symmetric. The new tensor dissi-
pation model shows increased mesh robustness. In the second-order formulation, a limiter for the stress
gradient is presented, as well as a vorticity limiter for the velocity gradient. Numerical results are dem-
onstrated for common test problems involving both gas and solid constitutive models.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Cell-centered hydrodynamics schemes in which all conserva-
tion equations are solved on a common control volume (called a
cell) are commonly applied to Eulerian methods, but not Lagrange.
A cell-centered Lagrange method was first suggested by Godunov
[24,25] and later by Ruppel and Harlow leading to the CAVEAT
code [1,20]. In CAVEAT, the surface fluxes were obtained by solving
an approximate Riemann problem at cell faces. Nodal velocity was
then inferred from the adjacent face velocities. This resulted in a
geometric volume change that was inconsistent with that obtained
from the finite volume (FV) evolution equation, thereby violating
the so-called Geometric Conservation Law (GCL) discussed in
Section 4.1.

After a hiatus of several years, interest in cell-centered methods
has increased, especially in the area of gas dynamics
[2,14,17,36,15,39]. These schemes have been enabled by the sem-
inal work of Després and Mazeran [17] in a scheme named GLACE.
In finite volume formulations, conservation is commonly enforced
by assuming continuity of fluxes at the cell surface. In GLACE, how-
ever, continuity of velocity was assumed at nodes, but continuity
of stress and total energy was replaced by a weaker statement of
momentum and energy conservation. This crucial idea led to the

construction of a node-centered approximate Riemann solver and
consequently a volume evolution equation that satisfied the GCL.

Subsequent work by Maire et al. [36] and Maire [39] revealed a
strong sensitivity in GLACE to cell aspect ratio, leading to numeri-
cal instabilities. To overcome this flaw, Maire and his co-authors
proposed an alternative scheme named EUCCLHYD that addressed
the aforementioned difficulty and resulted in a second form for the
nodal solver.

In a series of ground-breaking papers, both the GLACE
[14,18,33] and EUCCLHYD [38,37,39,40,22,23,41] schemes for
gases have been extended in areas such as second order, unstruc-
tured grids, axial symmetry, multi-dimensionality, and arbitrary
Lagrange–Euler (ALE).

We built upon the methodology of previous investigators to ex-
tend the formalism to solids, yielding a second-order scheme for
unstructured meshes in 1D, 2D, and 3D planar and curvilinear
geometry [9,10]. In the following we provide additional informa-
tion on this cell-centered hydrodynamics scheme, named CCH.
We note that Kluth and Després [33] proposed a first-order exten-
sion of the GLACE scheme to solid dynamics using an hyper-elastic
model and that other investigators [42,48] have since extended
EUCCLHYD to include solids. In our formulation, we cast the
Lagrangian evolution equations for solids in FV form with particu-
lar attention to the discrete form of the Second Law of Thermody-
namics for solids. This led to a new tensor dissipation relation that
differs from that previously assumed by other investigators,
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applies to both solids and gases, and guarantees a symmetric vis-
cous stress tensor. This dissipation relation led to a third form for
the nodal solution.

In the course of this investigation, we observed additional
instabilities in the EUCCLHYD methodology that we attribute to a
non-symmetric viscous stress, thereby violating a condition for
rotational equilibrium. We found the non-symmetric stress tensor
to be a consequence of the dissipation relation assumed in both
GLACE and EUCCLHYD. Our new nodal solver was observed to
remove the instabilities, substantially improving mesh robustness.

The formulation applies to arbitrarily connected meshes in all
dimensions. As part of the second-order formulation we also pro-
pose a simple extension to the velocity gradient limiter that re-
duces spurious vorticity [21], as well as a second-order limiter on
the stress tensor.

1.1. Implementation

As the following is intended to address the theoretical under-
pinnings of the method and not its implementation, we briefly
summarize the latter here. The Lagrange cycle is divided into a pre-
dictor step that uses a forward Euler scheme to advance the solu-
tion from time n to n + 1/2 and a corrector step that uses a central
difference scheme to advance from n to n + 1. The steps are identi-
cal aside from the time increments. Within each step conserved
quantities within cells are redistributed linearly using monotonic-
ity preserving linear gradients. This isolates stress and velocity dis-
continuities, and consequently entropy production, to the
interfaces between cells. Next, a Riemann-like problem is solved
to obtain fluxes at the cell mesh points. These fluxes are then inte-
grated using the finite volume method to yield the rates of change
of conserved quantities that are then integrated in time. The rate of
change of internal energy is inferred from the total and kinetic en-
ergy rates. Finally, an equilibrium constitutive model is invoked to
determine stress in the cell.

1.2. Organization

The paper is constructed as follows. In Section 2, we discuss the
mimetic foundations of cell-centered discritization, mesh topology
and notational conventions, and present a brief overview of the FV
method as applied here. We present in Section 3 the FV equations
for conserved quantities in Lagrangian form, a general hypoelastic
closure model, and a decomposition of the energy equation that
leads to a numerical definition of the Second Law of Thermody-
namics. Section 4 presents a number of ancillary relations that
need to also be satisfied. Section 5 extends the formulation to sec-
ond order, presents details of the velocity and stress redistribution,
and offers a new shock-based vorticity limiter. Section 6 reviews
the foundations of dissipation models and presents the new tensor
dissipation model. Section 7 couples the dissipation models to the
conservation of momentum, yielding a Riemann-like solution for
the nodal velocities as well as the surface stresses. Section 8 pre-
sents numerical results for a number of common test problems
involving both gas and solid constitutive models as described in
Appendix A. Conclusions appear in Section 9.

2. Mimetic foundations

There are many ways to difference the governing equations of
hydrodynamics. In the development of our scheme, a mimetic ap-
proach, based upon the finite volume method, was followed as a
guide to the derivation of the difference equations. The term mi-
metic was apparently coined by Hyman [30] and conveyed the idea
that a discrete scheme should mirror the mathematical properties

of the physical system. Initially, mimetic methods focused on dis-
crete approximations to differential operators. In our methodology,
we consider not only the governing equations (Section 3), but also
discrete forms of ancillary equations (Section 4) such as geometric
conservation, angular momentum conservation, equilibrium and
rotational equilibrium, as well as differential curl and divergence
operators. Although these ancillary equations may be satisfied ana-
lytically, they are not necessarily satisfied in a numerical scheme.
Once decisions about mesh topology and conservation are made,
the mimetic approach greatly constrains the formulation of the dif-
ference equations and reduces the introduction of inadvertent
inconsistencies. As shown in Section 4, the key to satisfying the
ancillary equations is twofold: locating the surface fluxes at the
mesh points and constructing a symmetric viscous stress tensor.

2.1. Multi-dimensional mesh topology and notation

A discretization stencil describes how information defined on
grids is spatially connected. It is important that the mathematical
formulation be consistent with the stencil. This gives rise to the
relatively unconventional notation described below. For regular
grids, stencils can be quite simple. For polygonal grids, the poten-
tial complexity is overcome by finding a simpler but universal
stencil. Our stencil is a minor extension of the multi-dimensional
unstructured stencil of Ref. [7] and is formed by decomposing
polygonal cells into triangular (2D) or tetrahedral (3D) substruc-
tures. We assume a tessellation of space that gives rise to a number
of geometrical entities. The various control positions p, z, f, and e
denote respectively points, zones or cells, faces, and edges. In 2D,
depicted in Fig. 1, the face and edge control positions are
degenerate.

The iota is the smallest letter in the Greek alphabet, and will be
used to denote the smallest simplex definable with this set of con-
trol points. Depending upon the dimensionality, the iota is
bounded by one of each of the types of control points. The stencil
also includes connectivity to adjacent iotas. The cell corner c con-
sists of those iotas sharing a common z and p.

In the discrete equations, it will be necessary to refer to physical
quantities in relation to the iota connectivity structure. The iota
will be indicated by a superscript. The logical location of the vari-
able relative to a particular iota is identified with a subscript. For
example, ui

z and ui
p denotes velocity at cell center and point respec-

tively relative to iota i, while ri
z and ri

p denote the stress at the
same respective locations. A geometrical quantity associated with
an iota is the outward directed surface normal Ni ¼ Nin̂i with area
Ni and direction n̂i.

2.1.1. Sums
It will be necessary to perform sums over iotas or other quanti-

ties. Conventional mathematical expressions for this are more

Fig. 1. 2D and 3D discretization stencil showing relation of the iota to a
computational cell and control points. The f and e positions are degenerate in 2D,
and also the p position in 1D. The shell between o and p is used to model
discontinuities.
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