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J. Velechovský a, R. Liska a,⇑, M. Shashkov b

a Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19 Prague 1, Czech Republic
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a b s t r a c t

High-order remapping methods, using piece-wise parabolic reconstruction with different limiting
techniques trying to keep monotonicity (defined in terms of bounds on remapped solution) in the neighbor-
hood of discontinuities, are investigated and compared on cyclic remapping tests. Piece-wise parabolic
remapping methods based on PPM and FCT approaches keep the solution bounds in all the cases. These
methods provide more accurate results than the standard remapping method using piece-wise linear
reconstruction, usually with Barth–Jespersen limiter.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The Arbitrary Lagrangian Eulerian (ALE) method is an extension
of Lagrangian hydrodynamical methods which allows to overcome
the difficulties connected with moving Lagrangian mesh, which for
some flow patterns, as e.g. shear or vortex flows, becomes distorted
so much that the Lagrangian computation cannot continue. In such
a case (or regularly after some number of Lagrangian time steps)
the ALE method rezones the distorted mesh to a new smoother
one and interpolates the conservative quantities (mass, momen-
tum and energy) from the old mesh to the new one. The interpola-
tion has to be conservative and is called remapping. The remapping
methods [1–3] typically use piece-wise linear (or constant) recon-
struction of the conserved quantities on the old mesh. During the
remapping, the reconstruction is integrated over the new cells to
get remapped quantities on the new mesh. The piece-wise con-
stant reconstruction leads to the first-order remapping, while
piece-wise linear reconstruction is second-order accurate in re-
gions of smooth flow. Here we investigate the usage of piece-wise
quadratic reconstruction for the remapping which should be third-
order accurate.

It is well-known that using standard piece-wise linear reconstruc-
tion works fine in the regions of smooth flow, however produces over-
shoots and undershoots (or even oscillations) when employed for
remapping in the vicinity of discontinuities. These monotonicity
violations are usually treated by applying limiters which effectively
reduce the slopes of linear reconstructions around discontinuities

resulting in monotone remapping. In the remapping context the
monotonicity requirement requests the remapped data to be mono-
tone when the initial data are monotone. Monotonicity of remapping
is usually formulated in terms of bounds preservation and is reason-
ably well understood for piece-wise linear reconstructions. Here we
look into the issue of how to limit piece-wise parabolic reconstruc-
tions, so that remapping results will stay monotone, in bounds, where
we use the standard definition of bounds. We try in the remapping
context several types of limiting of piece-wise parabolic reconstruc-
tion [4–6]. Instead of limiters one can use flux corrected remapping
[7,8] combining low-order and high-order numerical remapping
fluxes in a way satisfying the bounds. An option to correct remapping
results being out of bounds is to use repair techniques [3,2] which
redistributes conservatively the quantities being out of bounds into
the neighboring cells. Remapping with piece-wise quartic reconstruc-
tion, being the extension of the PPM method [6], has been investi-
gated in [9] for ocean modeling.

The rest of the paper is organized as follows. Section 2 contains
general introduction into the remapping in the flux form and defini-
tion of the remapping monotonicity. Different methods for piece-
wise parabolic reconstruction as well as introduction to flux
corrected approach for the remapping are described in Section 3.
In the next section, the order of convergence and bound-preserva-
tion of the methods are verified numerically on a set of cyclic remap-
ping tests for few types of smooth and discontinuous functions.

2. Remapping

In the selected approach the remapping can be divided into two
stages. At the first stage the remapped quantity is reconstructed on
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the old mesh. At the second stage the reconstructed function is
being integrated over all cells of the new mesh (see Fig. 1). We de-
note the nodes of the old mesh by xi�1=2 and the nodes of the new
mesh by xn

i�1=2. The mean value ui of the conserved quantity uðxÞ in
the old cell ðxi�1=2; xiþ1=2Þ is defined as

ui ¼
1

Dxi

Z xiþ1=2

xi�1=2

uðxÞdx; ð1Þ

where Dxi ¼ xiþ1=2 � xi�1=2 denotes the old cell volume. After the
Lagrangian step one does not know the function uðxÞ. Only the old
means ui and old mesh xi�1=2 are known. The new mesh xn

i�1=2 is con-
structed during the rezone stage (here we assume that the rezoned
nodes xn

i�1=2 do not move outside the neighboring old cells, i.e.
xi�3=2 6 xn

i�1=2 6 xiþ1=2;8i) and the remapping task is to compute
the new means un

i

un
i �

1
Dxn

i

Z xn
iþ1=2

xn
i�1=2

uðxÞdx; ð2Þ

on the new mesh, where Dxn
i ¼ xn

iþ1=2 � xn
i�1=2 is the volume of the

new cell. The quantity u is conservative, so we naturally require
the remapping to be conservative, i.e.X

i

uiDxi ¼
X

i

un
i Dxn

i : ð3Þ

Standard way to proceed is to derive a piece-wise polynomial
reconstruction function uRðxÞ from the old means ui and the old
mesh xi�1=2 (the formula (1) has to be valid for uRðxÞ and all cells
i). The reconstruction function uRðxÞ is then used in (2) to compute
the new means un

i . Now if we define the numerical remapping
fluxes (corresponding to the green areas in Fig. 1) as

Fi�1=2 ¼
R xn

i�1=2
xi�1=2

uR
i ðxÞdx for xn

i�1=2 > xi�1=2

�
R xi�1=2

xn
i�1=2

uR
i�1ðxÞdx for xn

i�1=2 < xi�1=2

8<
: ; ð4Þ

where uR
i ðxÞ stands for the polynomial reconstruction function in

the cell i, then the remapping is given by (see Fig. 1)

un
i Dxn

i ¼ uiDxi þ Fiþ1=2 � Fi�1=2; ð5Þ

and it is conservative. To specify the monotonicity requirement we
first define the bounds for the remapped values

umin
i ¼min ui�1;ui;uiþ1f g; umax

i ¼max ui�1;ui;uiþ1f g: ð6Þ

We say that remapping is in bounds if for all cells i

8i umin
i 6 un

i 6 umax
i : ð7Þ

3. Piece-wise parabolic reconstruction

Inside each cell we choose a parabolic reconstruction

uR
i ðxÞ ¼ ui þ ux

i ðx� xiÞ þ
1
2

uxx
i ðx� xiÞ2;

where xi is the center of cell xi ¼ ðxiþ1=2 þ xi�1=2Þ=2. The unknown
coefficients of this reconstruction ui;ux

i ;u
xx
i have to be computed

from the old means ui�1;ui; uiþ1 on the old mesh. The conservation
in the cell i implies ui ¼ ui � 1

24 uxx
i Dx2

i . The remaining unknown coef-
ficients are computed by the least squares minimization of recon-
struction error Uðux

i ;u
xx
i Þ in the neighboring cells i� 1 and iþ 1,

namely

Uðux
i ;u

xx
i Þ ¼

X
j2fi�1;iþ1g

uj �
1

Dxj

Z xjþ1=2

xj�1=2

uR
i ðxÞdx

 !2

:

This minimization, i.e. solution of the system
@Uðux

i
;uxx

i
Þ

@ux
i
¼ 0;

@Uðux
i
;uxx

i
Þ

@uxx
i
¼ 0 is equivalent to both zero contributions in

the error sum Uðux
i ; u

xx
i Þ in the presented case (parabolic recon-

struction in 1D). Resulting coefficients for the unlimited recon-
struction are

ux
i ¼ 2

ðuiþ1 � uiÞDxi;i�1D2xi;i�1 þ ðui � ui�1ÞDxi;iþ1D2xi;iþ1

Dxi;i�1Dxi;iþ1ðD2xi;i�1 þ D2xi;iþ1Þ
; ð8Þ

uxx
i ¼ 12

ðuiþ1 � uiÞDxi;i�1 � ðui � ui�1ÞDxi;iþ1

Dxi;i�1Dxi;iþ1ðD2xi;i�1 þ D2xi;iþ1Þ
: ð9Þ

where Dxi;i�1 ¼ Dxi�1 þ Dxi;D2xi;i�1 ¼ 2Dxi�1 þ Dxi. The reconstruc-
tion, as well as the complete remapping, is exact for quadratic
function.

Limiting of these unlimited coefficients with respect to standard
limiting of a piece-wise linear reconstruction is described in the
following section.

3.1. Reconstruction coefficients limiting

Minmod (MM) limiter’s extension to piece-wise parabolic
reconstruction [10] is done as a sequential application of minmod
function to the second derivative approximation and then to the
first one, i.e.

muxx
i ¼ minmod uxx

i ;b
ux

iþ1 � ux
i

Dxi;iþ1=2
; b

ux
i � ux

i�1

Dxi;i�1=2

� �
;where b 2 ð1;2Þ:

In our tests we use b ¼ 1:5. If the limiting of second derivative is
not necessary (i.e. muxx

i ¼ uxx
i ), then we set also mux

i ¼ ux
i , otherwise

mux
i ¼minmod ux

i ; b
uiþ1 � ui

Dxi;iþ1=2
;b

ui � ui�1

Dxi;i�1=2

� �
: ð10Þ

Note that standard piece-wise linear MM limited reconstruction
uses this slope (10) everywhere. The final formula for MM limited
parabolic reconstruction is

uMM
i ðxÞ ¼ uiþmux

i ðx� xiÞ þ
1
2

muxx
i ðx� xiÞ2 �

1
12

Dx2
i

� �
: ð11Þ

Kuzmin–Barth–Jespersen [4] (KBJ) limiter is based on the Barth–
Jespersen (BJ) limiter [11] BJ ui�1;ui;uiþ1;ux

i ;Dxi
� �

returning limiting

factor ai ¼ min ai�1=2
i ;aiþ1=2

i

� 	
in the cell i. The limiting factors

ai�1=2
i at two nodes i� 1=2 of the cell i are given by

ai�1=2
i ¼

min 1;
umax

i�1=2
�ui

uu
i;i�1=2

�ui

� �
for uu

i;i�1=2 � ui > 0

1 for uu
i;i�1=2 � ui ¼ 0

min 1;
umin

i�1=2
�ui

uu
i;i�1=2

�ui

� �
for uu

i;i�1=2 � ui < 0

8>>>><
>>>>:

; ð12Þ

where the bounds at the nodes are umin
i�1=2 ¼min ui�1; uið Þ;

umax
i�1=2 ¼max ui�1;uið Þ and the unlimited reconstruction from the cell

i at the nodes are uu
i;i�1=2 ¼ uu

i ðxi�1=2Þ ¼ ui � ux
i Dxi=2; uu

i;iþ1=2 ¼
uu

i ðxiþ1=2Þ ¼ ui þ ux
i Dxi=2. Now the parabolic KBJ limiter is defined as

Fig. 1. Remapping in a single cell. The old computational mesh with nodes xi�1=2

and means ui are in black, the new ones are in red. The reconstructed piece-wise
parabolic function uðxÞ is in blue. The green areas correspond to the numerical
fluxes Fi�1=2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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