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a b s t r a c t

This paper studies the problem of the gossip consensus algorithm with real-valued and quantized data.
We study the effect of the mixing parameter on the convergence rate of the proposed gossip consensus
algorithm, and show when the proposed bounds are optimized with respect to the mixing parameter.
For a gossip consensus algorithmwith quantized data, we prove that it can achieve the consensus almost
surely, and the expected value of the final states is equal to the average of the initial states. Moreover, we
provide a result characterizing the convergence performance of the distance from consensus and make a
comparison with the non-quantized gossip consensus algorithm. Finally, simulation results are provided
to evaluate the effectiveness of the proposed algorithm.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The study of average consensus algorithms has attracted a lot
of interest in the past years [1–5]. Average consensus algorithms
consist of computing the average of the initial state values in a
distributed fashion. Applications of average consensus algorithms
can be found in sensor networks [6–8], distributed coordination
control of multiple autonomous agents [9–11], and other areas.
Among them, one particular algorithm called gossip, which is
studied in-depth in [12], has attracted a lot of interest for its
appealing features: it distributes the computational burden; it
can efficiently avoid data collision and it is robust to the change
of network topology, to name a few. Due to the fact that each
node’s energy storage and computational power may be limited,
and the links that connect any two neighboring nodes can be
subjected to bandwidth constraints, message quantization should
be considered.

1.1. Related work

The quantization effects due to communication constraints
have been considered in many recent papers on time-invariant
consensus problem [13–19], while little research has been done
on the topic of quantization in the context of the time-varying
consensus problem, like the gossip algorithm [20–24]. Kashyap
et al. start the research on consensus algorithm under quantized
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communication from a different point of view [20], where the
authors require that the network must have and transmit integer-
valued data. They have proposed a class of gossip algorithm that
the network’s average is preserved at each iteration. Furthermore,
the notion of quantized consensus has been defined in the sense
that the states of the nodes in the network are guaranteed to
converge up to one quantization bin. However, the quantized
consensus is obviously not a precise consensus; that is, the nodes in
the network may have different state values in the end. In [22,23],
the authors consider the expected value of the time at which the
quantized consensus is achieved; they obtain a small convergence
time by solving a convex optimization problem, while we focus
on studying the the effect of the mixing parameter on the the rate
of convergence to consensus and the proposed bounds. The effect
of quantized communication on the gossip algorithm has been
considered in [24], where a class of quantized gossip consensus
algorithm, named the totally quantized gossip algorithm, has been
proposed. In their setting, the mixing parameter is 1/2. However,
our algorithm deals with a more general case; that is, the mixing
parameter ranges from 0 to 1.

1.2. Our results

In this paper, we first give a result on gossip consensus
algorithm with real-valued data; that is, the data exchanged
between any two nodes are non-quantized. We characterize the
convergence performance of the proposed algorithm and make
a comparison with the standard gossip algorithm [12]. Then, we
analyze the effect of quantized communication on the gossip
consensus algorithm; that is, we assume the data exchanged
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between any two nodes are quantized, and showhowquantization
affects the evolution of the gossip consensus algorithm. We
demonstrate that our algorithm indeed achieves the probabilistic
average consensus; that is, it reaches the average consensus almost
surely. We also provide a result characterizing the convergence
performance of the distance from consensus. Furthermore, we
derive when the proposed bound is optimized with respect to the
mixing parameter. Finally, simulation results are provided to show
the effectiveness of the proposed algorithm.
This paper is organized as follows: Section 2 introduces some

notations and preliminaries on graph theory and probabilistic
quantization, and gives a detailed description of the proposed
algorithm. Section 3 describes the gossip consensus algorithm
with real-valued data, and contains the main analysis result on
this algorithm. Section 4 describes the quantized gossip consensus
algorithm and provides performance analysis results. Section 5
illustrates our proposed algorithm through simulation examples.
We conclude the paper in Section 6.

2. Problem formulation

In this section, we first review some basic concepts and
properties from graph theory, and then we give a brief description
of the probabilistic quantization. We also present a lemma which
will be useful in the sequel. Finally, we propose our algorithm.

2.1. Graph model

Denote G = (V , E) as an undirected connected graph, V =
{1, 2, . . . ,N} denotes the set of vertices and E ⊂ {(i, j) : i, j ∈ V }
denotes the set of edges. Denote Ni = {j|(i, j) ∈ E} the set
of neighbors of vertex i and di the number of neighbors of the
vertex i. Each vertex of the graph is referred to as a node, and
endowed with a state xi(t), for every i ∈ V . The edge (i, j) ∈ E
indicates that node i and node j can establish a bidirectional noise-
free communication link with each other. Moreover, we always
assume that transmissions are successful.

2.2. Probabilistic quantization

The probabilistic quantization has been introduced in [18].
Following [18], we give a brief review of the probabilistic
quantization.
The probabilistic quantization Q : R → R is defined as

follows: suppose x ∈ R is bounded to a finite interval [−I, I],
and the interval is equally divided into M − 1 sub-intervals with
quantization points defined by the set θ = {θ1, θ2, . . . , θM}, where
θ1 = −I, θM = I . Denote the interval as ∆ = θi+1 − θi, for
i ∈ {1, 2, . . . ,M − 1}. Then, for x ∈ [θi, θi+1), Q(x) is a random
variable defined by

Q(x) =
{
θi with probability (θi+1 − x)/∆
θi+1 with probability (x− θi)/∆.

The following lemma, adopted from [25], gives two important
properties of the probabilistic quantizer.

Lemma 1. For every x ∈ [θi, θi+1),

E [Q(x)] = x, E
[
(x−Q(x))2

]
≤
∆2

4
. (1)

Note that Q(x) is an unbiased uniform quantizer; that is, the
quantized dataQ(x) is an unbiased representation of x.

2.3. Proposed algorithm

We assume at every time instant t the node i ∈ V is chosen
at random with probability 1/N , and then with probability Pij it
contacts one of its neighbors node j such that

∑
j∈Ni
Pij = 1.

We can find that Pji 6= Pij in general, furthermore, we can see that
the edge (i, j) is chosenwith probability P(i,j) = 1

N (Pij+Pji). Denote
by P = [Pij] the N × N matrix of nonnegative entries with the
condition Pij ≥ 0 provided that (i, j) ∈ E. We make the same
assumption on P as in [12] that P is a stochastic matrix with its
largest eigenvalue equal to 1, and all the other n − 1 eigenvalues
strictly less than 1.
Denote x(t) the vector of state values at the end of the time

instant t . Then, the edge (i, j) is selected with probability P(i,j), and
the states of node i and node j evolve as follows

xi(t + 1) = (1− q)xi(t)+ qxj(t) (2)

xj(t + 1) = qxi(t)+ (1− q)xj(t) (3)

xk(t + 1) = xk(t) for k 6= i, j (4)

where q ∈ (0, 1) is called the mixing parameter. Furthermore, it
can be compactly written as

x(t + 1) = W (t)x(t) (5)

where with probability P(i,j) the randommatrixW (t) is

W ij = I − q(ei − ej)(ei − ej)T

where ei, i = 1, . . . ,N denotes the column vector in RN having all
entries equal to 0 except a 1 in the ith position.
For the quantized version, the states evolve according to the

following equation

x(t + 1) = W (t)x̂(t)

where x̂(t) = Q(x(t)) = [Q(x1(t)),Q(x2(t)), . . . ,Q(xN(t))]T , and
W (t) is the same as above.

3. Gossip algorithm with real-valued data

In this section, we assume that the data exchanged between
any two nodes are real-valued, and the states evolve according
to (2)–(4).
In order to derive the convergence of x(t) to average consensus,

we investigate the error defined by

z(t) = (I − J)x(t)

where J = 1
N 11

T and 1 ∈ RN denotes the vector with all its
entries equal to 1. Note that Jx(t) = Jx(0); that is, the network’s
initial state average is preserved (this can be easily seen from
(2)–(4)). Moreover, z(t) gives a measure of how far x(t) away from
the average consensus. Now, we consider the evolution of z(t + 1)

z(t + 1) = (I − J)x(t + 1)
= (I − J)W (t)x(t)
= W (t)(I − J)x(t)
= W (t)z(t).

Then, we can write

E
[
‖z(t + 1)‖2|z(t)

]
= z(t)TE[W (t)TW (t)]z(t)

≤ λ2(E[W (t)TW (t)])‖z(t)‖2. (6)

The last inequality follows from the fact that z(t)⊥1, and 1
is the eigenvector corresponding to the largest eigenvalue 1 of
E[W (t)TW (t)]. Now, by repeatedly conditioning and using the
iteration obtained above, we have

E[‖z(t)‖2] ≤ λt2(E[W (t)
TW (t)])‖z(0)‖2. (7)

It can be seen that the inequality obtained above is the one derived
in [12]. However, W (t) here is more general and we’ll see in
the sequel that it’s not a projection matrix in general; that is,
W (t)TW (t) 6= W (t), when q 6= 1/2, while q = 1/2 is exactly the
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