Computers & Fluids 80 (2013) 102-115

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier.com/locate/compfluid

Coalesced computations of the incompressible Navier-Stokes equations
over an airfoil using graphics processing units

@ CrossMark

S.M. Iman Gohari *, Vahid Esfahanian, Hamed Moqtaderi

School of Mechanical Engineering, University of Tehran, Iran
Vehicle, Fuel and Environment Research Institute, University of Tehran, Iran

ARTICLE INFO ABSTRACT

Article history:

Received 30 September 2011

Received in revised form 10 April 2012
Accepted 17 April 2012

Available online 5 May 2012

This paper presents a Graphics Processing Unit (GPU) based implementation of the Finite Differencing
Time Domain (FDTD) methods, for solving unsteady incompressible viscous flow over an airfoil using
the Stream function-Vorticity formulation for a structured grid. For the large-scale simulations, FDTD
methods can be computationally expensive and require considerable amount of time to solve on tradi-
tional CPUs. On the contrary, modern GPGPUs such GTX 480 are designed to accelerate lots of indepen-
dent calculations due to advantage of their highly parallel architecture. In present work, the main
purpose is to show a new configuration for leveraging GPU processing power for the computationally
expensive simulations based on explicit FDTD method and CUDA language. Our proposed work improves
the GPU FDTD results by increasing the global memory coalescence with the same amount of occupancy,
resulting in an increase in maximum output performance. In addition, this study introduces a more coa-
lesced pattern of data loading which reduces the global memory requests. Although both GPU based pro-
grams are over 28 times faster than a sequential CPU based version, Implementation of our proposed

Keywords:

GPU

Coalesced pattern

Finite differencing time domain
CUDA

Airfoil

work showed up to 44% decrease in execution time comparing to the naive GPU method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Graphics Processing Units (GPUs) are specifically designed to be
extremely fast for processing large graphics data sets for graphical
tasks. However, in recent years due to higher computational power
of GPUs than PC-based CPUs by more than one order of magnitude,
the use of GPU in non-graphical computations has been grown
significantly. Therefore, major GPU vendors have been targeting
the high performance computing market by introducing GPU hard-
ware implementations. Software toolkits such as Compute Unified
Device Architecture (CUDA), released by NVIDIA in early 2007 [7],
provide a conveniently developed platform abstracting the GPU
and allowing easy access to its underlying stream computing
architecture. NVIDIA GPU consists of several so-called Streaming
Multiprocessors (SMs). Each SM drives several processor cores in
a Single Instruction Multiple Data (SIMD) fashion. Every SM has
some register memory available, as well as on-chip shared mem-
ory. This architecture allows efficient data synchronization and
data sharing among threads in the same thread block [11]. It is very
important to note that on-chip memories are limited in size
because of reduction in manufacturing cost. Furthermore, an

* Corresponding author at: School of Mechanical Engineering, University of
Tehran, Iran.
E-mail address: iman.gohari@ut.ac.ir (S.M. Iman Gohari).

0045-7930/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2012.04.022

incremental raise in the usage of shared memory can arise in a con-
crete decrease in the number of threads that can be concurrently
executed and thus significantly reducing the parallelism level
[11]. There is also an off-chip global memory with the size of the
device memory which can be accessed by all threads with higher
latency.

To achieve maximum performance, the primary concern often is
managing global memory latency. This is carried out by generating
enough threads to keep SMs occupied while many threads are
waiting on global memory accesses. Global memory request and
access patterns are two effective concerns for the DRAM efficiency
[15,4]. Because each data transferring is done by memory request,
any redundancy in memory requests can make long-latency. More-
over, coalesced memory access can reduce multiple memory acces-
ses from threads to a specific memory region into a fewer memory
access. Hence, the memory access pattern is also an important for
achieving high GPU performance due to limitations of on-chip
memories and high latency of global memory. More exhaustive
elucidation of the NVIDIA GPUs can be found in [7,5,12].

There are several schemes presented in the literature to acceler-
ate calculations on GPUs including using structure of arrays instead
of array of structures [4], using of shared memory [21,11], using of
split/reversed scheme in global memory [24] and register packing
[28]. Although it is possible to develop the special procedure for
the certain method or specific calculation [29,28], it is preferred


http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compfluid.2012.04.022&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2012.04.022
mailto:iman.gohari@ut.ac.ir
http://dx.doi.org/10.1016/j.compfluid.2012.04.022
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid

S.M. Iman Gohari et al./Computers & Fluids 80 (2013) 102-115 103

to have a robust algorithm with the discerning balance between
complexity of computer programming and the rate of performance
improvement. In some studies, alleviating the pressure on global
memory bandwidth involves additional usage of register and
shared memories, which in turn can limit the number of simulta-
neously executing threads and hence can reduce the SM’s occu-
pancy [4]. The improvement idea of present work is to reduce
the global memory requests and registers which causes a higher
coalesced pattern for the memory bandwidth.

In the current study, an optimized scheme is utilized to achieve
a better memory address pattern in GPU programming with the
concept of Cooperative Thread Array (CTA [16]) in collaboration
with shared memory for the finite difference method. The funda-
mental concept of present method is to modify the CTA configura-
tion with the association of shared memory. It will reduce
redundant global memory requests and cause uniform streaming
in the global memory without changing the program structure.
Implementation of present work consists of two cardinal modules.
The first one is to make more coalesced memory access and re-
quest patterns by modifying the CTA configurations and the later
one is to use the on-chip shared memory. It is expected that pres-
ent method will reduce number of GPU global memory transac-
tions due to higher coalesced pattern and consequently lower
runtime will be achievable. Moreover, by reducing the redundant
global memory requests with the same amount of occupancy, it
is expected that the present work has lower limit on GPU memory
bandwidth and hence higher memory throughput will be
attainable.

To implement present GPU optimization, unsteady flow solver
based on Stream function-Vorticity formulation and finite differ-
ence method is developed to simulate unsteady incompressible
turbulent flow over an airfoil. However, flow simulation in analyz-
ing process is more time consuming than the grid generation pro-
cedure, in the design or optimization purposes, grid generation
takes considerable amount of time. As a result, both grid genera-
tion process and flow simulation is calculated by GPU. The compar-
isons are based on CPU/GPU solver runtime and performance. Both
CPU and GPU version of solvers are developed through CUDA en-
abled C/C++ language. In the present work, all the comparisons
for solvers are evaluated with the same set of parameters i.e. num-
ber of time steps, flow time, etc. for two different CTA configura-
tions. In addition, to have a fair comparison between two CUDA
and C++ compilers, similar compiler settings are used. The GPU
performance and speedup ratio for different grid sizes are calcu-
lated and the ability of present GPU parallelizing work is investi-
gated and discussed.

2. Numerical implementation

The incompressible Navier-Stokes equations are solved numer-
ically with the Stream function-Vorticity formulation for a struc-
tured grid. It is clear that common CFD simulation needs
appropriate computational grid. Therefore, grid generation is one
of the most important parts of CFD simulations. In addition, some
CFD simulations need grid adaptation and refinement. This proce-
dure needs grid regeneration and sometimes takes more time than
the flow simulation itself. As [22] showed, to have a highly acceler-
ated flow solver, it is crucial to construct the computational grid
through the GPU. In the present study, both flow simulation and
grid generation is done through the GPU. The Stream function-Vor-
ticity formulation needs an orthogonal grid points with the desir-
able grid spacing to capture high velocity gradient in the
boundary layer. [23] showed the iterative procedure for construct-
ing the computational grid points which is used in the present
work. The numerical simulation of the unsteady incompressible

Navier-Stokes equations for the laminar/turbulent flow around
arbitrarily shaped two-dimensional airfoils is also considered. This
solution is based on the technique of numerical generation of a
curvilinear coordinate system which has coordinate lines coinci-
dent with the airfoil contour regardless of its shape. The explicit
simulation utilizes the Stream function-Vorticity formulation with
the direct satisfaction of No-slip condition [27] on the airfoil
surface.

2.1. Grid generation formulation and algorithm

Consider general Cartesian coordinates x, y indicate grid points
in the physical space where in the airfoil and airflow exist. As
showed in Fig. 1, a “C-type” grid is a conformal mapping between
physical space and computational one as &, 1 for 0 < & < &gy and
0 < 1 < Nmax- The boundary ¢ = 0 is mapped into the grid line mov-
ing forward from the outer boundary to the trailing edge. Because
& = &max line is placed on ¢ =0 line in the physical space, the peri-
odic boundary is considered on these grid lines. The boundary
1 =0 is mapped into the inner boundary (the airfoil surface) with
& =0 at the trailing edge and ¢ increasing clockwise around the air-
foil. The boundary # = #,qx is mapped into the outer boundary in
the same manner.

Consider ¢ = ¢(x, y) and 5 = 5(x, y) define the mapping from the
physical space to the computational space. The mapping functions
are required to satisfy the Poisson equations as follow:

V=P,
Vi =Q.
To obtain the Poisson equation in physical space, the following rela-

tions are helpful in transforming equations between physical and
computational spaces:

(1)

éX:h7 Vy: X”:
! . @)

where | =x.y, — y:x,. By using Eq. (2) in Eq. (1), the Poisson equa-
tions in physical domain are obtained as follow:
X — zﬁY;“n + erm = _.]2 (PX@ + an)v
O(y;': - zﬂy\w + Vym; = 7]2(Pycf + Qyn)'

inwhich oo =% +y7, = x,X; +y,y; and y = x2 + y2. Solving Eq. (3)
with inhomogeneous term of P and Q, make the appropriate grid be
generated. To accomplish this, these terms are defined as follow:

3)

P(&,1) = p(&)e™ + r(&)e b0lmac—1)
Q&) = q(&)e=c + s(&)e40ma—),

where a, b, c and d are adjustable positive parameters. Imposing
desirable grid spacing and angle at the body surface are done by
the use of the parameter p(¢), r(¢), q(¢) and s(¢). For this purpose,
consider the following equations on the inner (or outer) boundary

which impose the grid spacing and angle at the body surface [23]:

(4)

X¢cos(0)—yesin(0)

X =Sy NLEs
_ —Y:cos(0)+x;sin(6) (5)
Yyp=5—

\ /X?er?

in which s, is the desirable grid spacing, and 6 is desirable angle at
the boundary. By imposing the desirable grid spacing and angle on
the boundaries, formulation of p(¢&), r(¢), q(¢) and s(¢) is achievable
[23]. To evaluate the value of p(¢), r(&), g(¢) and s(¢), it is necessary
to have all the first and second derivatives of # and ¢. The derivative
of ¢ can be simply achieved by central finite difference approxima-
tion. The derivative of # in interior grid points is also derived by
central finite difference approximation. Eq. (5) is used for the first



Download English Version:

https://daneshyari.com/en/article/756590

Download Persian Version:

https://daneshyari.com/article/756590

Daneshyari.com


https://daneshyari.com/en/article/756590
https://daneshyari.com/article/756590
https://daneshyari.com

