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Complex colloidal fluids, such as emulsions stabilized by particles with complex shapes, play an impor-
tant role in many industrial applications. However, understanding their physics requires a study at suf-
ficiently large length scales while still resolving the microscopic structure of a large number of particles
and of the local hydrodynamics. Due to its high degree of locality, the lattice Boltzmann method, when
combined with a molecular dynamics solver and parallelized on modern supercomputers, provides a tool
that allows such studies. Still, running simulations on hundreds of thousands of cores is not trivial. We
report on our practical experiences when employing large fractions of an IBM Blue Gene/P system for
our simulations. Then, we extend our model for spherical particles in multicomponent flows to aniso-
tropic ellipsoidal objects rendering the shape of, e.g., clay particles. The model is applied to a number
of test cases including the adsorption of single particles at fluid interfaces and the formation and stabil-
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ization of Pickering emulsions or bijels.
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1. Introduction

Colloidal particles are highly attractive in the food, cosmetics,
and medical industries to stabilize emulsions or to develop sophis-
ticated ways to deliver drugs at the right position in the human
body. The underlying microscopic processes of emulsion stabiliza-
tion with particles can be explained by assuming an oil-water mix-
ture. Without additives, both liquids phase separate, but the
mixture can be stabilized by adding small particles which diffuse
to the interface and stabilize it due to a reduced interfacial free en-
ergy. If for example individual droplets of one phase are covered by
particles, such systems are referred to as “Pickering emulsions”,
which have been known since the beginning of the 20th century
[1,2]. Particularly interesting properties of such emulsions are the
blocking of Ostwald ripening and the rheological properties due
to irreversible particle adsorption at interfaces or interface bridg-
ing due to particle monolayers [3]. Recently, interest in particle-
stabilized emulsions has led to the discovery of a new material
type, the “bicontinuous interfacially jammed emulsion gel” (bijel),
which shows an interface between two continuous fluid phases
that is covered by particles. The existence of the bijel was predicted
in 2005 by Stratford et al. [4] and experimentally confirmed by
Herzig et al. in 2007 [5].

Computer simulations are promising to understand the dy-
namic properties of particle-stabilized multiphase flows. However,
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the shortcomings of traditional simulation methods quickly be-
come obvious: a suitable simulation algorithm is not only required
to deal with simple fluid dynamics but has to be able to simulate
several fluid species while also considering the motion of the par-
ticles and the fluid-particle interactions. Some recent approaches
trying to solve these problems utilize the lattice Boltzmann meth-
od for the description of the solvents [6]. The lattice Boltzmann
method can be seen as an alternative to conventional Navier—
Stokes solvers and is well-established in the literature. It is attrac-
tive for the current application since a number of multiphase and
multicomponent models exist which are comparably straightfor-
ward to implement. In addition, boundary conditions have been
developed to simulate suspended finite-size particles in flow.
These are commonly used to study the behavior of particle-laden
single phase flows [7]. A few groups combined multiphase lattice
Boltzmann solvers with the known algorithms for suspended par-
ticles [4,8]. In this paper we follow an alternative approach based
on the multicomponent lattice Boltzmann model of Shan and Chen
[9] which allows the simulation of multiple fluid components with
surface tension. Our model generally allows arbitrary movements
and rotations of rigid particles of arbitrary shape. Further, it allows
an arbitrary choice of the particle wettability - one of the most
important parameters for the dynamics of multiphase suspensions
[3]. For a detailed introduction to the method see Ref. [10], where
our model has been applied to spherical particles at fluid inter-
faces. We have presented a thorough validation of the method
for single particle situations and have shown that a transition from
a bijel to a Pickering emulsion can be found by varying the particle
concentration, the particle’s contact angle, or the volume ratio of
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the solvents. Further, we investigated the temporal evolution of
the droplet/domain growth in emerging Pickering emulsions and
bijels.

Modelling colloidal particles as perfect spheres is a strong sim-
plification of systems appearing in nature. There, the particles are
generally not spherical, but might show geometrical distortions
or fully anisotropic shapes, as is, for example, common for clay par-
ticles. As a first step to investigate the impact of particle anisotropy
on the adsorption and stabilization properties, this paper focuses
on ellipsoidal particles. In addition to the properties of spheres ad-
sorbed at an interface, in the case of anisotropic ellipsoidal parti-
cles the orientation becomes important and the process of
adsorption is in this case more complex [11]. Furthermore the
anisotropy of the ellipsoids leads in general to a deformation of
the interface. However, an adsorbed sphere or ellipsoid with a con-
tact angle 0 =90° does not deform the interface in absence of an
external potential such as gravitation. For multiple particles capil-
lary interactions, which depend on the distance and the orientation
of the particles, become relevant [12] and orientational discontin-
uous phase transitions of the particles can be found [13]. Experi-
mentally it was shown that the number of ellipsoidal particles
required to stabilize a fluid-fluid interface decreases with increas-
ing particle aspect ratio and that a tip-to-tip arrangement is dom-
inant [14].

The remaining sections are organized as follows: In Section 2
the simulation method (lattice Boltzmann combined with molecu-
lar dynamics) is illustrated. Since studying particle-stabilized
emulsions demands an exceptional amount of computing re-
sources we focus on specific implementation details of our simula-
tion code in Section 3. In particular, we highlight specifically code
improvements that allow to harness the power of massively paral-
lel supercomputers, such as the Blue Gene/P system JUGENE at
Jilich Supercomputing Centre with its ability to run up to
294 912 MPI (Message Passing Interface) tasks in parallel. The fol-
lowing section reports on simulations of single particle adsorption
of ellipsoidal particles and the formation of bijels and Pickering
emulsions. Finally, we conclude in Section 5.

2. Simulation method

The lattice Boltzmann method is a very successful tool for mod-
elling fluids in science and engineering. Compared to traditional
Navier-Stokes solvers, the method allows an easy implementation
of complex boundary conditions and—due to the high degree of
locality of the algorithm—is well suited for the implementation
on parallel supercomputers. For a thorough introduction to the lat-
tice Boltzmann method we refer to Ref. [6]. The method is based on
a discretized version of the Boltzmann equation

ffx+e,t+1)=f(xt)+ Q(x,0), (1)

where ff(x,t) is the single-particle distribution function for fluid
component c after discretization in space x and time t with a dis-
crete set of lattice velocities ¢; and

_fic(xv t) 7fieq (pc(x7 t)7uc(x= t))
T

ol(x. ) = 2)
is the Bhatnagar-Gross-Krook (BGK) collision operator. f%%(p¢, u¢) is
the equilibrium distribution function and t is the relaxation time.
We use a three-dimensional lattice and a D3Q19 implementation
(i=1,...,19). From Eq. (1), the Navier-Stokes equations can
be recovered with density p°(x,t) =) ,ff(x,t) and velocity
u® =Y ffc;/p° in the low-compressibility and low Mach number
limit. If further fluid species ¢ with a single-particle distribution
function ff(x,t) are to be modeled, the inter-species interaction
force

FC(Xa t) = 7lpf(x7 t)zgcc’zqﬂ, (xl’ t) (X’ - X)7 (3)

with a monotonous weight function P(x, t) for the effective mass is
calculated locally according to the approach by Shan and Chen and
incorporated into the collision term Qf in Eq. (1) [9]. In our case, the
coupling strength g, is negative in order to obtain de-mixing and
the sum over X' runs over all sites separated from x by one of the
discrete c;. Colloidal particles are discretized on the lattice and cou-
pled to both fluid species by means of a moving bounce-back
boundary condition [15,7]: if x is part of the surface of a colloid then
Eq. (1) for adjacent fluid sites x + ¢; is replaced with

ffx4c,t+1) =ff(x+¢,t) + Q(x+¢,t) +C, (4)

where C :%pC(XJrci,t)usurf-ci is a linear function of the local
particle surface velocity ug,s and the direction i is defined via
¢ = —C;. o, and ¢, are constants of the D3Q19 lattice. The particle
configuration is evolved in time solving Newton’s equation in the
spirit of classical molecular dynamics simulations. As the total
momentum should be conserved, an additional force

F(t) = (2ff(x+¢.0) + O)¢ (5)

acting on the particle is needed to compensate for the momentum
change of the fluid caused by Eq. (4). The potential between the par-
ticles is a Hertz potential which approximates a hard core potential
and has the following form for two spheres with the same radius R
[16]:

éy =Kuy(2R— 1)} for ry < 2R. (6)

rij is the distance between the two sphere centers and Ky the force
constant. For the simulations which are discussed later in this text a
value of Ky =100 is used. In the next step the potential is general-
ized to the case of ellipsoids with the parallel radius R, and the
orthogonal radius R, by following the method which was applied
by Berne and Pechukas for the case of an intermolecular potential
[17]. We define ¢ =2R and € = K40? and extend ¢ and ¢ to the
anisotropic case so that

€
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with 6 = 2R,y = Bk and 0; the orientation vector of particle i.

SRS .
The scaled potentidl can be written as

A A Tij
0(01.0,15) = €(00.0) b (75T o ) for y < A ®)
¢y is a dimensionless function which takes the specific form of the
potential form into account. In addition to adding the direct interac-
tion described by the Hertz potential we correct for the limited
description of hydrodynamics when two particles come very close
by means of a lubrication correction. If the number of lattice points
between two particles is sufficient, the lattice Boltzmann algorithm
reproduces the correct lubrication force automatically. The error
that occurs if the flow is not sufficiently resolved can be corrected

by

1 1

in the case of two spheres with radius R. We choose a cut-off at
A =% and u; is the velocity of particle i. This equation is generalized
to ellipsoids in a similar way as the Hertz potential using Eq. (7).
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