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a b s t r a c t

We present a framework for adaptive finite element computation of turbulent flow and fluid–structure
interaction, with focus on general algorithms that allow for complex geometry and deforming domains.
We give basic models and finite element discretization methods, adaptive algorithms and strategies for
efficient parallel implementation. To illustrate the capabilities of the computational framework, we show
a number of application examples from aerodynamics, aero-acoustics, biomedicine and geophysics. The
computational tools are free to download open source as Unicorn, and as a high performance branch of
the finite element problem solving environment DOLFIN, both part of the FEniCS project.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we present our work on finite element simulation
of turbulent flow and fluid–structure interaction for complex
geometry and deforming domains, in the form of a computational
framework with focus on adaptive algorithms for parallel com-
puter architectures. We present our open source implementation
of the algorithms in the form of a high performance branch of
the finite element problem solving environment DOLFIN [1,2] and
the unified continuum mechanics solver Unicorn [3]. DOLFIN and
Unicorn are parts of the FEniCS project [4], with the goal to
automate the scientific software process by relying on general
implementations and code generation, for robustness and to en-
able high speed of software development. To illustrate the capacity
of the computational tools, we present snapshots from a number of
application projects, together with parallel performance results.

We target a large family of problems of continuum mechanics,
including incompressible and compressible flow, and fluid–struc-

ture interaction, described by (i) conservation of mass, (ii) balance
of momentum, and (iii) conservation of energy, together with con-
stitutive laws for fluids and solids. The basic laws (i)–(iii) take a
generic form and can thus be handled by a general discretization
strategy, with a common implementation. The constitutive laws,
on the other hand, are specific for each problem, and are treated
as data. The current implementation of Unicorn consists of a small
collection of finite element solver implementations for continuum
mechanics models, to the most part based on general code with
only a minimum of code dedicated to the particular model.

Simulation of turbulent flow is based on the General Galerkin
(G2) [5] framework, where the effect of unresolved scales of turbu-
lence is modeled by numerical dissipation from residual based
stabilization, similar to an Implicit Large Eddy Simulation (LES)
[6]. Similarly, unresolved shocks and discontinuities in compress-
ible flow are treated by shock capturing stabilization.

Finite element methods have the benefit of a firm mathematical
foundation which enables quantitative a posteriori error analysis,
which forms the basis for adaptive methods where the computa-
tional mesh is modified to satisfy certain error tolerances guided
by a posteriori error indicators. Fluid–structure interaction and
deforming domains are treated by moving mesh algorithms and
Arbitrary Lagrangian–Eulerian (ALE) methods. Parallel efficiency
is essential, where adaptive methods for unstructured meshes pose
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particular challenges, and we here point out key algorithms of our
software implementation.

The Unicorn and DOLFIN branches focused on high performance
parallel computing were released open source in 2010, initially
with only the adaptive incompressible flow solver fully parallelized
[7]. Recently, also the fluid–structure interaction solver was parall-
elized, with the compressible flow solver expected to be fully
parallelized in 2012. Thus the Unicorn computational framework
offers open source high performance simulation tools for a wide
range of applications in computational mechanics.

The outline of the paper is the following: first we recall the basic
continuum mechanics models we target, including turbulent flow
and fluid–structure interaction, we then present the basic finite ele-
ment algorithms underlying adaptivity and moving meshes, with par-
ticular focus on distributed parallel algorithms. We conclude the
paper by a number of applications and a discussion of future work.

2. Basic models

2.1. The Navier–Stokes equations

We consider fluid enclosed in a fixed, open domain X in three-
dimensional space R3 with boundary C over a time interval
I ¼ ½0; t̂� with initial time zero and final time t̂.

We seek the density q, momentum m = qu, with u = (u1, u2, u3)
the velocity, and the total energy E as functions of (x, t) 2 Q �X � I,
where x = (x1, x2, x3) denotes the coordinates in R3. The equations
for û � ðq;m; EÞ read:

@tqþr � ðquÞ ¼ 0;
@tmþr � ðm� uþ IpÞ ¼ g þr � ð2leðuÞ þ kðr � uÞIÞ;
@tEþr � ðEuþ puÞ ¼ r � ðð2leðuÞ þ kðr � uÞÞ � uþ jrTÞ;
ûð�;0Þ ¼ û0;

ð1Þ

where p = p(x, t) is the pressure of the fluid, � denotes the
tensor product, I denotes the identity matrix in
R3; @t ¼ @=@t; g ¼ ðg1; g2; g3Þ is a given volume force (e.g. gravity)
acting on the fluid, û0 ¼ û0ðxÞ represents initial conditions,

eðuÞ ¼ 1
2
ruþruT
� �

;

is the strain rate tensor, and j P 0 the thermal conduction parameter.
The viscosity parameters are assumed to satisfy conditions l > 0,
k + 2l > 0. For simplicity we sometimes use the approximation k = 0.

Further, the total energy E = k + e, where k = qjuj2/2 is the kinetic
energy, with juj2 � u2

1 þ u2
2 þ u2

3, and e = qT is the internal energy
with T the temperature scaled so that cv = 1, where cv is the heat
capacity under constant volume.

For very high Reynolds numbers we may approximate the Na-
vier–Stokes equations by inviscid flow, where the viscosity coeffi-
cients and thermal conductivity are zero, resulting in the Euler
equations:

@tqþr � ðquÞ ¼ 0 in Q ;

@tmþr � ðm� uþ IpÞ ¼ g in Q ;

@tEþr � ðEuþ puÞ ¼ 0 in Q ;

ûð�;0Þ ¼ û0 in X:

ð2Þ

The number of unknowns including the pressure is six but there
are only five equations in (1), (2); for a perfect gas, we close the
system with the following state equation:

p ¼ ðc� 1Þe ¼ ðc� 1ÞqT ¼ ðc� 1ÞðE� qjuj2=2Þ;

expressing the pressure p as a function of density q and tempera-
ture T, where c = cp is the adiabatic index with cp the heat capacity
under constant pressure, and (c � 1) is the gas constant.

For a perfect gas, the speed of sound c is given by c2 = c(c � 1)T,
and the Mach number is defined as M = juj/c, with u the velocity of
the gas.

2.2. Incompressible flow

For low Mach numbers one may use the approximation of
incompressible flow, corresponding to a divergence free condition
on the velocity. The density may be variable, or for small density
variations be approximated as constant q0, leaving only the
momentum equation and the divergence free condition. We then
have the following equations: find û � ðu; pÞ such that:

@tuþ ðu � rÞuþrp ¼ g þ 2mr � eðuÞ in Q ;

r � u ¼ 0 in Q ;

ûð�;0Þ ¼ û0 in X:

ð3Þ

with m = l/q0 the kinematic viscosity.

2.3. Turbulent flow

Direct Numerical Simulation (DNS) of turbulent flow is not pos-
sible in the general cases that we target, of high Reynolds numbers
and complex geometry. In a Large Eddy Simulation (LES) [6] only
the largest scales of the flow are resolved, leaving the smallest,
unresolved turbulent scales to be taken into account only through
a subgrid model. Similarly, shocks and discontinuities in compress-
ible flow can be left unresolved to be modeled through shock cap-
turing regularization, and the effect of turbulent boundary layers
can be approximated by wall shear stress models [8].

Our approach to simulation of turbulent flow is based on the
General Galerkin (G2) method, where numerical stabilization
based on the residual of the equations models the effect of unre-
solved features in the flow, from turbulence to shocks [5]. The ef-
fect of unresolved turbulent boundary layers is modeled by a
skin friction model for the wall shear stress.

2.4. Unified continuum fluid–structure interaction

For robustness we choose a monolithic approach to fluid–struc-
ture interaction (FSI), which we derive from the basic conservation
laws. We here also seek a phase function h and introduce the
unified Cauchy stress r for all phases. The incompressible unified
continuum fluid–structure model [9] reads:

qð@tuþ ðu � rÞuÞ þ r � r ¼ g in Q ;

r � u ¼ 0 in Q ;
@thþ ðu � rÞh ¼ 0 in Q ;

ûð�;0Þ ¼ û0 in X;

where the phase function h defines the solid and fluid domains by:

XsðtÞ ¼ fx : x 2 X; hðx; tÞ ¼ 0g;
Xf ðtÞ ¼ fx : x 2 X; hðx; tÞ ¼ 1g:

For example, we can define a Newtonian fluid and an incompress-
ible Neo-Hookean solid (here in stress rate form):

r ¼ �rD þ pI;

rD ¼ hrf þ ð1� hÞrs;

rf ¼ 2lf eðuÞ;
@trs ¼ 2lseðuÞ þ rurs þ rsru>;

where the subscript s denotes solid and f denotes fluid.
The FSI problem is thus treated as a multiphase flow problem,

where a phase function h identifies the solid and fluid, respectively.
Typically we let the finite element mesh track the solid
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