Computers & Fluids 80 (2013) 327-332

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier.com/locate/compfluid

Towards a complete FEM-based simulation toolkit on GPUs:
Unstructured grid finite element geometric multigrid solvers with
strong smoothers based on sparse approximate inverses

@ CrossMark

M. Geveler *, D. Ribbrock, D. Géddeke, P. Zajac, S. Turek

Institute of Applied Mathematics, TU Dortmund University of Technology, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 15 September 2011

Received in revised form 28 January 2012
Accepted 30 January 2012

Available online 9 February 2012

We describe our FE-gMG solver, a finite element geometric multigrid approach for problems relying on
unstructured grids. We augment our GPU- and multicore-oriented implementation technique based on
cascades of sparse matrix-vector multiplication by applying strong smoothers. In particular, we employ
Sparse Approximate Inverse (SPAI) and Stabilised Approximate Inverse (SAINV) techniques. We focus on
presenting the numerical efficiency of our smoothers in combination with low- and high-order finite ele-
ment spaces as well as the hardware efficiency of the FE-gMG. For a representative problem and compu-
tational grids in 2D and 3D, we achieve a speedup of an average of 5 on a single GPU over a multithreaded
CPU code in our benchmarks. In addition, our strong smoothers can deliver a speedup of 3.5 depending on
the element space, compared to simple Jacobi smoothing. This can even be enhanced to a factor of 7 when
combining the usage of approximate inverse-based smoothers with clever sorting of the degrees of free-
dom. In total the FE-gMG solver can outperform a simple (multicore-) CPU-based multigrid by a total fac-

Keywords:
Unstructured grids
Multigrid solvers
Sparse matrices
Finite elements
Strong smoothers

GPU computing tor of over 40.
SPAI

SAINV

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element methods (FEM) are a highly accurate flexible and
theoretically rigorous instrument for solving partial differential
equations (PDEs) that arise in many fields. Examples include
high-order and non-conforming elements over arbitrarily unstruc-
tured geometries, adaptivity, a priori/a posteriori error estimation
and special pressure-Schur-complement preconditioning in the
solution of the Navier-Stokes equations [1].

A time consuming step within the solution pipeline of FEM is
the linear system solver. Both numerical efficiency and hardware
efficiency have to be addressed simultaneously to achieve a good
total efficiency: Geometric Multigrid (gMG) solvers can treat the
arising sparse linear systems in a number of iterations that is inde-
pendent of the grid width. In combination with high-order finite
elements, even superlinear convergence effects can be obtained
[2]. However, the numerical efficiency and robustness of multigrid
methods strongly depends on the smoothing operator, see Section
3.2

Over the past several years, graphics processors (GPUs) have
made the transition to a valuable and increasingly accepted

* Corresponding author.
E-mail address: markus.geveler@math.tu-dortmund.de (M. Geveler).

0045-7930/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compfluid.2012.01.025

general purpose computing resource, both on standalone worksta-
tions and in large-scale HPC installations. The main reason why
GPUs excel at many HPC workloads that provide ample parallelism
is that their design is fundamentally different from commodity
CPU architectures: Instead of minimising the latency of a single
task, they maximise the overall throughput of a large set of identi-
cal tasks, and the chips’ ratio of functional units to control logic is
much more favourable. For memory-bound problems, the GPU
boards’ more hard-wired memory lanes allow for a higher signal
quality, and thus more aggregated memory bandwidth. We refer
to a recent article by Garland and Kirk [3] for technical details
and a concise description of the hardware-software model of
throughput-oriented computing.

2. Solution approach

We present and evaluate an augmented version of a previously
proposed implementation technique for FE-gMG (Finite Element
Geometric Multigrid) solvers for PDE problems discretised on
unstructured grids. Our target architectures are fine-grained
(manycore) GPUs - at this point, we focus entirely on the solver
performance, evaluating it for different finite element spaces. Since
the smoother is the most critical part concerning performance and
robustness of the gMG, we evaluate numerically efficient


http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compfluid.2012.01.025&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2012.01.025
mailto:markus.geveler@math.tu-dortmund.de
http://dx.doi.org/10.1016/j.compfluid.2012.01.025
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid

328 M. Geveler et al./Computers & Fluids 80 (2013) 327-332

smoothers based on approximate inverses (SPAI and SAINV), see
Section 3.2.

In our approach, performance-critical components of the solver
pipeline, the smoother, grid transfer, coarse-grid solver and defect
operators, are entirely based on cascades of sparse matrix-vector
multiplications (SpMV). This consequent reduction to one perfor-
mance-critical kernel within the multigrid solver has surprisingly
many beneficial properties: The multigrid solver needs to be
implemented only once, and is completely oblivious of the under-
lying finite element space, and even oblivious of the dimension of
the computational domain (2D, 3D). Furthermore, our implemen-
tation replaces many specialised kernels with one central,
well-understood and well-optimised parallel kernel (see Section
3.1), which is favourable in terms of software maintainability,
performance-tuning and the adoption of GPUs in multigrid and
finite element codes.

2.1. Related work

On GPUs, multigrid methods have received only moderate
attention during the past several years, at least compared to the to-
tal number of papers concerned with sparse linear system solvers
or finite element/volume/difference discretisations. The first to
implement multigrid solvers for flow simulation in computer
graphics entirely on GPUs were Bolz et al. [4] and Goodnight
et al. [5]. They used geometric and algebraic multigrid (aMG) for
finite-difference type discretisations. More recent publications pre-
senting applications that require multigrid solvers are supersonic
flows (aMG, unstructured grids [6]), (interactive) flow simulations
for feature film (aMG/gMG, structured [7,8]), out-of core multigrid
for gigapixel image stitching (gMG/aMG, structured [9]), image
denoising and optical flow (gMG/aMG, structured [10]), power grid
analysis (aMG, structured/unstructured [11]) and electric potential
in the human heart (aMG, unstructured [12]). This last paper is
similar in spirit to our work, since the authors also reduce (almost)
the entire multigrid algorithm to sequences of sparse matrix-
vector multiplications. The important difference (besides aMG vs.
gMG) is that they use a specifically designed, problem-specific data
layout in their SpMV implementation whereas we go further and
use a layout that has been shown to deliver superior performance
for a wide range of non-zero patterns. Also very closely related is
the work by Heuveline et al., who pursue many different fine-
grained parallel preconditioning techniques based on multicolour-
ing: Simultaneously to our work, they have started to evaluate
their preconditioners as smoothers in the multigrid context [13].
In summary, we can say that previous publications describing
multigrid on GPUs either target algebraic multigrid, or are limited
to structured grid geometric multigrid and low-order discretisa-
tions. To the best of our knowledge, together with Heuveline and
his co-workers we are the first to present geometric MG with strong
smoothers for high-order unstructured grid FEM on GPUSs.

2.2. Contribution and paper outline

The paper at hand is the second in a series concerning FE-gMG
on GPUs, significantly expanding a previous conference proceed-
ings [14] and the initial publication on the topic which did not
address strong smoothers [15]. The FE-gMG in this paper is based
on a better matrix storage format (ELLPACK-T, see Section 3.1), and
we focus on the evaluation of different preconditioners (Jacobi,
SPAI and SAINV) in combination with different conforming finite
element spaces (Q; and Q). Finally, all results are calculated on a
newer generation of hardware (especially Fermi-type GPUs), see
Section 4.

Throughout our computations, we solely concentrate on the
solution of the linear system, which means, that all needed

matrices (e.g. stiffness- and transfer-matrices as well as the pre-
conditioners given by sparse approximate inverses within the
smoother) are preassembled; this topic is subject to another pub-
lication under preparation. This is justified since in many practical
scenarios, the linear solver dominates the total execution time and
the combined effects of advanced smoothers, suitable numbering
of the degrees of freedom and feasible utilisation of hardware
acceleration have to be analysed. Here, the former increases
numerical efficiency while simultaneously increasing the complex-
ity of the SpMV operation by increasing the number of non-zeros
and altering the sparsity pattern; the latter two are strongly related
to each other since the sorting strategy directly influences matrix-
bandwidth which is a major criterion for the performance of the
GPU SpMV. In our publications mentioned above, we have already
analysed the impact of the numbering of the degrees of freedom
especially when using the GPU. Hence, in this paper, we concen-
trate on the other aspects mentioned above. We continue by
describing the components of the FE-gMG solver in detail in
Section 3, where we focus on the smoother and grid transfer
operators. Especially, Section 3.1 is dedicated to the SpMV kernel
and the implementational aspects of FE-gMG. In Section 4 we pres-
ent results for our approach applied to a common model problem.
Finally, we give a concise conclusion in Section 5.

3. FE-gMG - Finite Element Geometric Multigrid
3.1. SpMV kernel

We do not utilise the ‘standard’” CSR format, but rather the
ELLPACK-T format proposed and exemplarily implemented by
Vazques et al. [16]. In our experience, ELLPACK(-T) leads to signif-
icantly higher computational throughput, independent of the
architecture and even for sequential code.

With the ELLPACK-T format, the sparse matrix-vector multipli-
cation y = Ax is performed by computing each entry y; of the result
vector y independently. In general, this results in a regular access
pattern on the data of y and A. In contrast, the access pattern on
x depends highly on the non-zero structure of A, and due to the
indirect addressing, memory access can be arbitrarily scattered.

The ELLPACK-T based SpMV kernel is mapped to the GPU archi-
tecture by launching one or more device threads for the calculation
of an entry y;, resulting in fully coalesced memory access to the
matrix and the vector y due to the column-major ordering used.
The access to the array x can be cached via the texture cache on
the GPU to improve efficiency. On the FERMI generation of GPUs,
the device-wide L2-cache is well utilised. No synchronisation
between threads is necessary. The threads in one CUDA warp do
not diverge because flow instructions are not necessary which
would cause serialisation. Every warp finishes execution directly
when all non-zero entries in the rows of its threads are completely
processed. Because of this, only warps with a high relative non-zero
count within their rows execute longer compared to average warps.

Finally, the ELLPACK-T format augments the former ELLPACK-R
by storing t elements of one row contiguously in memory and thus
allows for multiple threads in one warp to process one row.

3.2. Smoothing operator

As a key component for multigrid, our smoother is realised as a
damped preconditioned Richardson iteration, using SpMV to plug
in the preconditioner and for defect calculation:

X1 — x¥ + wM(b — Ax¥)

Here, Ax = b is the linear system to solve and M ~ A~! a preassem-
bled (sparse) preconditioner that approximates the inverse of the



Download English Version:

https://daneshyari.com/en/article/756615

Download Persian Version:

https://daneshyari.com/article/756615

Daneshyari.com


https://daneshyari.com/en/article/756615
https://daneshyari.com/article/756615
https://daneshyari.com/

