Computers & Fluids 80 (2013) 356-364

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier.com/locate/compfluid

Solving incompressible two-phase flows on multi-GPU clusters

Peter Zaspel *, Michael Griebel !

@ CrossMark

Institute for Numerical Simulation, University of Bonn, WegelerstrafSe 6, 53115 Bonn, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 11 August 2011

Received in revised form 4 January 2012
Accepted 22 January 2012

Available online 31 January 2012

Keywords:

Graphics processing units
Multi-GPU

Two-phase flows
Navier-Stokes equations
Level-set method

Finite difference

GPU clusters.

We present a fully multi-GPU-based double-precision solver for the three-dimensional two-phase incom-
pressible Navier-Stokes equations. It is able to simulate the interaction of two fluids like air and water
based on a level-set approach. High-order finite difference schemes and Chorin’s projection approach
for space and time discretization are applied. An in-depth performance analysis shows a realistic
speed-up of the order of three by comparing equally priced GPUs and CPUs and more than a doubling
in energy efficiency for GPUs. We observe profound strong and weak scaling on two different multi-

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Moving forward to Exascale computing, the high performance
computing (HPC) community has recognized the application of
massively parallel hardware as one of the key ingredients to satisfy
future computing requirements. One type of this hardware are
graphics processing units (GPUs). They are a prototype for a gen-
eral class of many-core processors with a high thread-parallelism
which is expected to dominate future compute clusters. Conse-
quently, there is now a growing number of multi-GPU-based HPC
systems for which scientists need appropriate numerical software.

An important area for multi-GPU applications are computational
fluid dynamics (CFD) simulations. Commercial CFD package ven-
dors only slowly start to adapt this technology. But in academia,
several groups have already published results on multi-GPU codes
in CFD, e.g. for Lattice-Boltzmann applications [1,2], compressible
fluids [3,4] or meteorology [5]. For grid-based incompressible flow
simulations, which are described by the Navier-Stokes equations,
Cohen and Molemaker were in [6] among the first to show multi-
GPU results. They implemented a finite difference/volume code
for single machine multi-GPU parallelism. The first truly
distributed-memory MPI-based Navier-Stokes solver with finite
differences was done by Jacobsen et al. [7]. Later, this group also
showed extensions to this solver including a full geometric

* Corresponding author.
E-mail addresses: zaspel@ins.uni-bonn.de (P. Zaspel), griebel@ins.uni-bonn.de
(M. Griebel).
! Principal corresponding author.

0045-7930/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compfluid.2012.01.021

multigrid [8]. Other multi-GPU implementations of the Navier-
Stokes equations are based on finite elements [9,3].

In our current research, we are especially focused on two-phase
flow applications based on the Navier-Stokes equations. Kelly pre-
sented in [10] a single-GPU accelerated two-phase solver using the
level-set method. Kuo et al. [11] accelerated their shared-memory
parallel two-phase flow solver by a single-GPU-based Poisson sol-
ver. We are also aware of unpublished work on a multi-GPU two-
phase flow solver by the group of Aoki et al. at the Tokyo Institute
of Technology. However, to the best of our knowledge, there is no
publication on a grid-based double-precision fully GPU-based par-
allel solver for the two-phase incompressible Navier-Stokes equa-
tions, which is able to scale on distributed memory multi-GPU
clusters.

In this paper, we now present such a two-phase flow solver. It
extends the introducing work by the authors in [12]. Like our ori-
ginal in-house CPU fluid solver NaSt3DGPF [13-16], the new GPU
solver uses a finite difference discretization on a staggered grid
in complex geometries and the continuum surface force approach
to simulate two fluid phases like air and water. The fluid phases are
distinguished by a level-set function. A range of applications, e.g. in
the domain of droplet/ bubble dynamics [16] or water ways simu-
lations [14] is thus able to profit from the performance available on
large GPU clusters.

Note here that this publication contains several significant
improvements and extensions in contrast to the authors’ first publi-
cation on this topic [12]. The most important improvement is based
on the seamless and full usage of GPUs for all computations. Now,
besides just the Poisson solver and the level-set reinitialization, also
all other GPU parallelizable parts of the described numerical method

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compfluid.2012.01.021&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2012.01.021
mailto:zaspel@ins.uni-bonn.de
mailto:griebel@ins.uni-bonn.de
http://dx.doi.org/10.1016/j.compfluid.2012.01.021
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid

P. Zaspel, M. Griebel / Computers & Fluids 80 (2013) 356-364 357

are completely implemented on GPUs. This eliminates the large
overhead of hundreds of GPU « CPU data transfers as further ex-
plained in Section 3.1. Altogether, this leads to a major performance
improvement of more than 30% compared to the authors paper [12]
which is more precisely described in the dedicated Section 4.5. We
additionally integrate a methodology based on performance per
Watt and performance per Dollar benchmarks, which allows to have
more fair performance comparisons, see Sections 4.1,4.4 and 4.7 also
with specific focus on Fermi GPU code optimizations. Finally, we
show multi-GPU scaling on a 48 Fermi GPU cluster in Section 4.6.

The remainder of this article is organized as follows: In Section
2, we introduce the governing equations and the numerical meth-
ods applied in our solver. Section 3 presents details of the GPU
implementation. Then, in Section 4, we review GPU benchmarking
in general and give an in-depth performance analysis of the multi-
GPU code. In Section 5, we discuss our results and provide final
conclusions.

The major contributions of this work are as follows:

e For the first time, results of a fully GPU-based double-preci-
sion solver for the two-phase incompressible Navier-Stokes
equations discretized on a grid using the level-set method
are published.

e The solver is an MPI parallel multi-GPU code which scales on
multi-GPU clusters. It thus fulfills the requirements for mod-
ern HPC systems.

e We present general guidelines for efficient and future-safe
GPU implementations and give best practice rules for
multi-GPU benchmarking.

2. Governing equations and numerical solution

We describe three-dimensional incompressible two-phase flow
problems using the Navier-Stokes equations which are extended
by a level-set formulation [17] to cope with phase-dependent den-
sities and viscosities [18]. Surface tension effects at the free surface
between the fluid phases are modeled by the continuum surface
force method [19]. This approach has been previously described
in detail in [16] for our CPU-based fluid solver NaSt3DGPF. We here
just give a short sketch of the idea.

The model for two-phase incompressible fluids can be de-
scribed in a set of equations with

p(¢)%+w =V ((9)S) — oKk (d)3()Vo + p(¢)E, (1)
V. i=0, (2)
o +1ii-Vo =0, (3)

where Eq. (1) is the momentum equation with time t, the fluid
velocity i, pressure p and the level-set function ¢. The level-set
function, a signed distance function with |V¢|=1, implicitly de-
scribes the free surface I'y = {X € Q | ¢(X) = 0} and allows to define
phase dependent densities p(¢) and viscosities u(¢$) by

p(¢) = py +(p1 — p) H(9),

M(P) =ty + (1 — 1) H(9),
0 if p <0,
with H(¢):={ 1 if ¢ =0,
1 if ¢ >0,

<0 ifXeQ,

and ¢(X,t):=< =0 if Xe Iy,

>0 ifXeQ,.

Here, ©2; and 2, are the domains of the two fluid phases and p1,
P2, U1 and p, denote the respective material parameters. The mate-
rial derivative 28 is given by 24 := 9,1 + (i - V). In the surface ten-
sion force term mc(¢) (¢)V¢ of Eq. (1), x identifies the curvature
of the free surface and ¢ denotes the surface tension coefficient
which is a material constant. Furthermore, § is the Dirac-delta
functional. Finally, g stands for volume forces, e.g. gravity and S
is the stress tensor S := Vii + {Vii}'. Eq. (2) is the continuity equa-
tion and describes the incompressibility constraint. The last Eq. (3)
models the transport of the level-set function, i.e. the dynamics of
the free surface.

We discretize the above equations with the finite difference
method on a staggered uniform grid. For numerical reasons, we ap-
ply a smoothing [18] to the Heaviside functional H(¢) and the Dir-
ac-delta functional in an e-environment of the free surface.
Chorin’s projection approach [20] then leads to a solution method
which is described in detail in Algorithm 1. Here, we employed a
first-order Euler time integration to get a simple formulation. In
practical application problems, we use a second-order Adams-
Bashforth time integration to compute the intermediate velocity
field and to transport the level-set function. The time derivative
for the artificial time 7 in the level-set reinitialization process is
discretized by a third-order Runge-Kutta method. Note that we
have to reinitialize the level-set function after each transport step
to recover the distance property |V¢| =1 which is necessary for a
correct evaluation of the free surface’s normal and curvature k.
All transport terms and the level-set gradient in the reinitialization
step are discretized using a fifth-order weighted essentially non-
oscillatory (WENO) scheme, while the diffusion term in the second
step is computed using second-order central differences. The Pois-
son equation is discretized by a second order method and solved
with a Jacobi-preconditioned conjugate gradient (CG) method for
sparse linear systems. Here, the Poisson equation’s non-constant
coefficients, namely the density jump for two-phase flows, lead
to a high condition number for the linear system and thus to a slow
convergence of the iterative solver. It is therefore a well-known
fact that the Poisson solver dominates the overall run-time for such
a solution method.

The full GPU solver supports different kinds of boundary condi-
tions. These include slip and no-slip solid boundaries. Inflows and
outflows can be controlled by Dirichlet and homogeneous Neu-
mann boundary conditions for the velocity field. We introduce
complex geometries by flagging out some cells of the simulation
domain and apply appropriate boundary conditions at the fluid-
solid interface cells of the obstacles.

Algorithm 1. Chorin’s projection approach

forn=1,2,...do:
1. set boundary conditions for "
2. compute intermediate velocity field i*:

fj*_ﬁ" n\Qn
" V- (u(¢"S")

— (@ V)"

1
p(e")
((ﬁ) K(¢")o(¢") V" + &

3. apply boundary conditions and transport level-set function:
¢ = §" + St(i" - V")
4, reinitialize level-set function by solving
dod + sign(¢*)(|Vd| — 1) =0, d° = ¢*
5. solve the pressure Poisson equation with ¢™*! =
v - (i Vpn+l> \vaST
6. apply velocity correctlon
i+l — i — vpn+1

‘t)"+1

Download English Version:

https://daneshyari.com/en/article/756618

Download Persian Version:

https://daneshyari.com/article/756618

Daneshyari.com

https://daneshyari.com/en/article/756618
https://daneshyari.com/article/756618
https://daneshyari.com

