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a b s t r a c t

The paper deals with a parallel algorithm for calculations on multiprocessor computers and GPU accel-
erators. The calculations of shock waves interaction with low density bubble results are presented [1].
This algorithm combines a possibility to capture a high resolution of shock waves, the second-order accu-
racy for TVD schemes, and a possibility to observe a low-level diffusion of the advection scheme.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The hyperbolic conservation laws and Euler equation of com-
pressible fluid dynamics have been a subject of numerous
researches for several decades, for a good reason. They are used
in airplane and automobile design, in description of galaxy forma-
tions and supernova explosions, in studies of weather prediction
and so on. Three-dimensional high-resolution schemes provide
an opportunity to explore the behavior of waves of high intensity,
resulting in the solution of various problems of unsteady gas
dynamics.

Current problems of mathematical modeling in a realistic
setting require increase of the size of computational domain and
that of the accuracy of calculations themselves. Consequently, it
is vital to update existing algorithms and create new ones for mod-
ern multicore architecture computers. However, improvement of
existing programs on multiprocessing systems may bring some
problems. It is essential to ensure that the results of a new
approach provide the convergence of the same order as the results
obtained in successive calculations. In order to construct a parallel
algorithm without losing the calculation accuracy or stability, it is
necessary to exploit physical laws written in conservative form.

Explosions of supernovae are a highly spectacular event in the
Universe. Explanation of the core collapse in a supernova explosion
mechanism is one of the most compelling and complicated prob-
lems of modern astrophysics. At an initial stage of the core collapse
in an ongoing supernova research, the mechanisms of explosion
has been connected to neutrino deposition and bounce shock

propagation. Spherically, symmetrical numerical simulations have
shown that the bounce shock appears at the distance of 10–30 km
from the center; then, it moves at a radius of about 100–200 km
and stalls without explosion. Farther investigations developed an
extension of the same mechanism to 2D and 3D cases. Numerical
simulations of 2D and 3D models have an additional feature
connected to a development of neutrino driving convection deep
inside after the shock. The complex calculations have shown with
a sufficient level of confidence that this mechanism does not give a
supernova explosion either.

A mechanism for core collapse supernova explosion, the MR
mechanism, was suggested by Bisnovatyi-Kogan in 1970 [2], see
also [3]. The main idea of the MR mechanism is to transform part
of the rotational energy of presupernova into the radial kinetic
energy (explosion energy). During a collapse the star rotates differ-
entially. This differential rotation leads to a toroidal component of
an appearing magnetic field and its amplification. The growth of
the magnetic field means amplification of the magnetic pressure
with time. A compression wave appears near a region of the extre-
mum of the magnetic field. This compression wave moves out-
wards along a steeply decreasing density profile. In a short time
it transforms into a fast MHD shock wave. When the shock reaches
the surface of the collapsing star, it ejects part of the matter and
energy increasing boundlessly. This ejection can be interpreted as
an explosion of the core collapse supernova.

First 2D simulations of the rotating magnetized star collapse
were presented in [4], with unrealistically large values of the
magnetic field. The differential rotation and amplification of
the magnetic field resulted in the formation of an axial jet. In 1D
case, a star was represented as an infinite cylinder. A set of ideal
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MHD equations with self-gravitation in Lagrangian variables was
used for these simulations. The initial magnetic field had only
the r component. The differential rotation led to the appearance
and amplification of the toroidal u component of the magnetic
field. Numerical simulations of 1D MR supernova had shown, that
the toroidal field amplified due to the differential rotation that pro-
duced MHD shock wave which moved outwards. Part of the matter
was ejected by the shock wave. The amount of the ejected energy
�1051erg is enough for the explanation of an supernova explosion.
1D simulations show that time of the evolution of a MR supernova
texpl depends on the relation of the initial magnetic Emag and grav-
itational Egrav energies a ¼ Emag

Egrav
as texpl � 1ffiffi

a
p . It means that for real

values of the magnetic field (a � 10�6�8) texpl becomes rather large.
Parameter a characterizes a stiffness of the MHD equations
describing a MR supernova. The smallness of the parameter a is
one of the main difficulties for the numerical simulation of a MR
supernova. From the physical point of view, small a means the
existence of two significantly different time scales – a very small
acoustic time scale and a huge time scale proportional to the time
of the magnetic field amplification.

More realistic model of magnetorotational supernova was cal-
culated in 2D approximation. The star was represented by a rotat-
ing self-gravitating gaseous body. Results of the 2D simulations of
the magnetorotational supernova are qualitatively different from
1D results. In the 2D case the magnetorotational instability (MRI)
appears, leading to an exponential growth of all components of
the magnetic field. MRI significantly reduces the time for the mag-
netorotational explosion. A toy model for the explanation of the
MRI development in the magnetorotational supernova was sug-
gested in the paper [5].

3D models of the magnetorotational supernova are more realistic
and have no constraints related to the symmetry assumptions. 3D
models allow us to simulate the magnetorotational supernova explo-
sion in the case when rotational axis and the dipole magnetic field
axis (if the dipole is taken as initial magnetic field) do not coincide
(inclined rotator). The application of numerical method in Lagrangian
variables, similar to the method used for the 2D case, leads to serious
difficulties in 3D case [6].

In the 2D case, the matter of the star is slipping in u direction. To
produce the magnetorotational explosion the protoneutron star has
to make thousands of revolutions. The rotation of the matter in the
outer layers of the protoneutron star is highly differential. If the 3D
Lagrangian grid consisting of tetrahedrons would be applied for the
simulations, then in the region of a strong differential rotation
the grid would require reconstruction at almost every time step.
The reconstruction of the grid leads to the interpolation of the grid
functions to a new grid structure. Frequent applications of the grid
reconstruction procedure and interpolation of grid functions for the
same parts of the Lagrangian grid can lead to a significant perturba-
tion of the solution to initial set of MHD equations with self-
gravitation.

2. Computational fluid dynamics

Computational fluid dynamics is a powerful approach in simu-
lation of the complex gas flow occurring in astrophysical hydrody-
namics. TVD, ENO, WENO, PPM schemes are referred to kinds of
schemes that meet all these stated conditions and possess high res-
olution in regions of small perturbations combined with monoto-
nicity in the domains of steep gradients. In this paper, we will
consider TVD schemes of second order accuracy. The schemes of
first order accuracy maintain monotony behavior, but often lead
to strong smearing of shock wave fronts. Second order accurate
of nonlinear schemes with the diminishing of total variation allow
one to carry out calculations of high resolution and to prevent non-

physical oscillations beyond shock wave fronts. The schemes of
this type are of different order of accuracy in the domains with
steep and low gradients [8,11]. Application of the these schemes
in IIId case produces especially good results while simulating col-
lapsing stars.

Equations that govern hydrodynamic motion are conservation
laws for mass, momentum, [7] and energy. The conservation form
of hydrodynamic equations in terms of Eulerian coordinate system
is the following:

@q
@t
þ @q
@xi
ðqv iÞ ¼ 0; ð1Þ

@qv i

@t
þ @

@xi
ðqv iv j þ PdijÞ ¼ 0; ð2Þ

@e
@t
þ @

@xi
½ðeþ PÞv i� ¼ 0: ð3Þ

The effect of gravitational field is omitted in Eqs. (1)–(3) as well
as that of other sources of energy, for example, neutrino radiation.
The equation of state can be written as following:

P ¼ ðc� 1Þe; ð4Þ

here q is density, v is the vector of speed and P is pressure; more-
over, the total energy is e ¼ 1

2 qv2 þ e.
A TVD scheme is applied to the Eqs. (1)–(3) [9,10]. A common

restriction of oscillations is a nonlinear condition of stability. The
discrete solution for TVD scheme can be defined as follows:

TVðutÞ ¼
XN

i¼1

jut
iþ1 � ut

i j; ð5Þ

that is as the measure of total amount of oscillations.
Thus using second order accuracy for fluxes Fð2Þtiþ1=2 across the

cells boundaries, a nonlinear TVD scheme can be presented in
another way. Second order fluxes are derived from first order accu-
racy fluxes Fð1Þtiþ1=2 for the upwind scheme that apples a second order
accuracy correction. A first order accuracy flux is obtained in turn
from the flux mean values. The second order accuracy correction is
introduced in order to bound spurious oscillations. Hence the num-
ber of oscillations on the current time step must not exceed the
number of oscillations on the previous one, i.e. TV(ui+1) 6 TV(ui).

Different flux limiters are used in order to limit oscillations, spe-
cifically, minmod, superbee, vanLeer. The former limiter chooses
the smallest absolute value between the left and right corrections:

minmodða; bÞ ¼ 1
2
½signðaÞ þ signðbÞ� minðjaj; jbjÞ: ð6Þ

The superbee limiter chooses between the correction and 2
times the smallest correction, whichever is smaller in magnitude

superbeeða; bÞ ¼
minmodða;2bÞ; if jajP jbj;
minmodð2a; bÞ; if jaj < jbj:

�
ð7Þ

The vanLeer limiter is the most moderate of all limiters and al-
lows one to find the harmonic mean between left and right
corrections

vanleerða; bÞ ¼ 2ab
aþ b

:

The test, proposed in [9], was used for checking the obtained
computer program

u0 ¼
�x sin 3

2 px2
� �

; �1 6 x < � 1
3 ;

j sinð2pxÞj; jxj < 1
3 ;

2x� 1� 1
6 sinð3pxÞ; 1

3 < x < 1:

8><
>: ð8Þ

Solution obtained by a TVD scheme with the vanLeer limiter (stared
line) is presented in Fig. 1 The analytical solution is included for
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