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a b s t r a c t

In this study, the lattice Boltzmann method, pseudospectral method, and artificial compressibility method
were implemented on both CPU and GPU machines. Homogeneous isotropic turbulent flows were calcu-
lated using these three methods with the C language and CUDA library. The computational results show
that the flow field obtained by the lattice Boltzmann method was almost the same as that obtained by
the pseudospectral method. Among these three methods, the computational time of the lattice Boltzmann
method on a GPU was the shortest of all calculations. Thus, the lattice Boltzmann method was well accel-
erated by GPUs. These results proved that the lattice Boltzmann method on a GPU has advantages of accu-
racy and computational speed.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, an increasing number of reports concerning numerical
simulations performed on GPUs have been presented [1,2]. Previ-
ously, when computer simulations were tried on GPUs, knowledge
about computer graphics was required. Now, the CUDA library
developed by NVIDIA allows programs for computer simulations
on GPUs to be created without knowledge about computer graphics.

Because a single GPU has a huge amount of arithmetic units and a
wide-bandwidth data path between the GPU processor and mem-
ory, a GPU has arithmetic performance that is almost 30–100 times
greater than that of a CPU. Extra devices, such as the ClearSpeed de-
vices, to increase arithmetic performance for computer simulation
have been proposed, but they have not been used in mainstream
computer simulations because of their high cost. Since GPUs are
general-purpose devices, whose prices are reasonable, and consume
relatively little electricity, recent supercomputers have tended to
use a large number of GPUs to increase their performance.
Nowadays, simulations on GPUs are thus one of the hot topics in
computational fluid dynamics (CFD). A single GPU, which has many
arithmetic units, can be regarded as a kind of massively parallel
computer. In general, computational schemes suitable for parallel
computers are suitable for GPUs as well. Although the

Navier–Stokes equations have traditionally been employed as CFD
algorithms, study on the lattice Boltzmann method (LBM) [3], which
is a relatively new CFD algorithm, is also one of the hot topics in CFD.
It has been derived that the lattice Boltzmann equations and the
Navier–Stokes equations give the same flow fields when the Mach
number is low enough. Therefore, the LBM is usually used to
simulate incompressible flows. Although many methods to solve
the incompressible Navier–Stokes equation have been proposed,
in almost all of these methods it is necessary to solve the Poisson
equation, which requires an enormous number of iterative calcula-
tions to obtain the pressure fields. By contrast, since the D2Q9-type
lattice Boltzmann method only requires calculations of the lattice
Boltzmann equations at each of nine speeds, the amount of compu-
tations of the LBM tends to be smaller than that of the traditional
method. Although the LBM has second-order accuracy for space
derivative terms and first-order accuracy for time derivative terms,
in practice this method gives higher accuracy. Since the Courant
number of the LBM is always 1, numerical viscosity, which is pro-
duced by an upwind scheme for stability, will not appear. Satofuka
and Nishioka [4] calculated homogeneous isotopic turbulent flows
and compared the results obtained by the LBM and by the 10th-
order finite difference method, showing that the LBM has good
accuracy and is suitable for parallel computers. Also Satofuka and
Nishida [5], and Satofuka et al. [6] reported that results by 10th
order scheme agree with that by pseudospectral method. These
reports indirectly show that the accuracy of LBM is quite close to
that of pseudospectral method.
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The spectral method [7] or pseudospectral method [8] (PS) is
usually employed for direct numerical simulations (DNS) of turbu-
lent flows. These methods provide accurate solutions even if the
number of grid points is relatively small. Since both the spectral
method and PS require Fourier transforms, these methods are not
suitable for parallel computers. These methods work very well
for flow fields that have periodic boundary conditions, and they
are thus one of the important solutions in CFD. However, it is dif-
ficult for these methods to simulate the flow fields that appear in-
side fluid machinery or in industrial applications, because it is
difficult to impose wall conditions or other boundary conditions
with these methods.

Artificial compressibility method (ACM) [9] is one method to
simulate incompressible flow. Although unlike other methods
based on the Navier–Stokes equations, ACM does not calculate a
pressure Poisson equation, ACM needs subiterations to impose
the continuity conditions for unsteady simulations. However,
Ohwada and Asinari [10] reported that ACM can provide unsteady
flow fields without subiterations. If subiterations are removed
from ACM, the computational costs will be significantly reduced.

Industrial applications are important subjects of CFD. To treat
these applications, the CFD method must have the following three
characteristics:

(1) The CFD method can accurately simulate turbulent flow.
(2) The CFD method can impose many types of boundary condi-

tions without special effort.
(3) The CFD method can be rapidly and easily run on massively

parallel computers.

The LBM running on GPUs can satisfy these three characteris-
tics. In this paper, we calculated a homogeneous isotropic turbu-
lent flow using the LBM, PS, and ACM without subiteration.

These calculations were performed on a CPU and GPUs. The
computational times and accuracy of the calculations and were
compared among these methods, showing that the LBM on a
GPU is a relatively accurate and fast method, making it suitable
for practical use.

2. Numerical methodology

2.1. The lattice Boltzmann method

The nine-velocity square lattice model was used. Fig. 1 shows
the relationships among the grid nodes. One grid node has eight

connections to its eight neighboring grid points. Because particles
on a grid point will stay on that point or move to the neighboring
grid points within a time unit, there are three particle speeds. The
speed of particles that move along the x or y axis is je1ij = 1, and
that of particles that move in a diagonal direction is je2ij ¼

ffiffiffi
2
p

.
The lattice Boltzmann equation is

friðxþ eri; t þ 1Þ � friðx; tÞ ¼ Xri ð1Þ

where fri, x, e, t, and Xri are the distribution function, position vec-
tor of the nodes, velocity of the particles, time, and collision opera-
tor, respectively. In order to reduce the complexity of the collision
operator, the single-time relaxation approximation proposed by
Bhatnagar et al. [11], was applied to Eq. (1). Then, the lattice Boltz-
mann BGK (LBGK) equation was derived as

friðxþ eri; t þ 1Þ � friðx; tÞ ¼
1
s

friðx; tÞ � f ð0Þri ðx; tÞ
h i

ð2Þ

Here f ð0Þri indicates the equilibrium distribution functions defined as
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a ¼ 4=9 ð6Þ
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and s is the relaxation time defined as

s ¼ 6mþ 1
2

ð8Þ

Here m is the kinematic viscosity. In order to obtain the density per
node q and macroscopic velocity u, the following equation was
used:

q ¼
X
r

X
i

fri ð9Þ

qu ¼
X
r

X
i

frieri ð10Þ

The time step is chosen as Dt = 1.0.

2.2. The traditional method

The incompressible Navier–Stokes equations are

@u
@x
þ @v
@y
¼ 0 ð11Þ

@u
@t
þ u

@u
@x
þ v @u

@y
þ @p
@x
¼ 1

Re
@2u
@x2 þ

@2u
@x2

" #
ð12Þ

@v
@t
þ u

@v
@x
þ v @v

@y
þ @p
@y
¼ 1

Re
@2v
@y2 þ

@2v
@y2

" #
ð13Þ

In this study, the PS and ACM were used in order to numerically
solve these equations.

2.3. The pseudospectral method

Generally, the spectral method and PS are employed for DNS of
turbulent flows, because these methods can provide accurate solu-
tions even if the number of grid points is relatively small. In this
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Fig. 1. Square lattice model and velocity of particles.
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