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a b s t r a c t

The question of observability arises naturally in the analysis of control problems. If the solution of a PDE
initial-boundary value problem is known to be zero in a part of the domain, does this guarantee it is zero
everywhere? Themost popular techniques to establish such results are based on local unique continuation
results (Holmgren’s theorem) or Carleman estimates. The purpose of this note is to draw attention to a
class of problems where the observed region is bounded by characteristics, and local unique continuation
fails. Nevertheless, observabilitymay hold. A problem of this nature arose in recent work by the author on
control of viscoelastic flows [M. Renardy, Are viscoelastic flows under control or out of control? System
Control Lett. 54 (2005) 1183–1193]. In this note, we first analyze a simple example which shares the
same essential features. Specifically, we consider the problem uxt = αu, for spatially periodic solutions.
We show that observability holds for data given on the line x = 0. We shall show, however, that there is
no observability estimate. We shall then show how the methods used in the more elementary example
can be extended to the case of viscoelastic shear flows.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the theory of control of partial differential equations, it
is of interest whether a system can be controlled by an input
that affects only a part of the physical domain or only the
boundary. Results along such lines have been established for
many types of linear partial differential equations, see e.g. [4,6,12].
Typically, the strategy for proving controllability results is based on
‘‘observability’’ for a dual problem. The question of observability is
whether a solution of a PDE is uniquely determined by its values in
a subdomain.
The control of viscoelastic media poses some new issues. Early

papers on the subject [5,7–10] basically viewed viscoelastic media
as a perturbation of the elastic case and obtained results on
controllability and observability which are analogous to what is
known for equations of hyperbolic type. In this setting, a ‘‘state’’ of
the system consists of displacement and velocity, as in the elastic
case, and ‘‘controllability’’ refers to control of these variables. In
contrast to the elastic case, however, displacement and velocity in
a viscoelastic medium are not sufficient to determine the future
evolution of the system. The problem changes if the stresses, in
addition to the deformation and velocity, are to be controlled.
For viscoelastic fluids of Maxwell or Jeffreys type, this question
was considered in [2,11]. For the coupled system describing
the evolution of velocity and stresses, any spatial boundary is
characteristic. This means that local unique continuation results
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such as Holmgren’s theorem do not hold. Nevertheless, it has been
shown that observability results can hold. The objective of this note
is to study this issue inmore detail. Specifically, we shall prove that
even though observability holds, there is no observability estimate
in any Sobolev norm.
We shall first investigate the issue in a simple example given by

the equation uxt = αu. This example shares the main features of
the viscoelastic problem, i.e. spatial boundaries are characteristic,
and there is a family of eigenvalues converging to a finite limit. We
shall then show how the same techniques extend to shear flows of
viscoelastic fluids.

2. A simple example

We consider solutions of the partial differential equation

uxt = αu, (1)

where α is a constant. We impose periodic boundary conditions,

u(x+ 2π, t) = u(x, t) (2)

and an initial condition at t = 0,

u(x, 0) = φ(x). (3)

If φ(x) is given such that∫ 2π

0
φ(x) dx = 0, (4)

then this is a well-posed initial value problem. Indeed, if

φ(x) =
∑
n6=0

an exp(inx), (5)
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then

u(x, t) =
∑
n6=0

an exp(inx− αit/n). (6)

We shall prove the following observability statement.

Theorem 1. Let α be any nonzero constant. Assume that
∑
|an| <

∞ and that u(0, t) = 0 for t in some interval (a, b), where 0 ≤ a <
b <∞. Then u(x, t) is identically zero.

Proof. It follows from (6) that u(0, t) is an entire function of t ,
henceu(0, t) = 0 for all t > 0. Nowconsider the Laplace transform

F(λ) =
∫
∞

0
u(0, t) exp(−λt) dt =

∑
n6=0

an
λ+ iα/n

. (7)

Since u(0, t) = 0, we must of course have F(λ) = 0. On the other
hand, the series representation is valid for Re λ > |Imα|, and it
defines a function which is analytic except for poles at−iα/n, and
a nonisolated singularity at 0. Since F is actually zero, the residues
at the poles, i.e. the an, must be zero.
The observability theorem we just proved is clearly false if α =

0, since, in that case, any function of the form u(x, t) = χ(x),
with arbitrary χ , is a solution. Hence, the result depends on the
lower order term in the differential equation. It also depends on
the periodic boundary condition, as the next result shows. �

Theorem 2. There exists a solution of uxt = αu such that u = 0 for
x < 0, but u is not identically zero. Moreover, we can make u of class
C∞ across x = 0.

Proof. This is a special case of Theorem 8.6.7 in [3], but for this
simple example we can give a more elementary argument.
For a functionw(x), define

Lw(x) =
∫ x

0
w(ξ) dξ . (8)

It is then easy to see that any function of the form

u(x, t) =
∞∑
n=0

(αt)n

n!
Lnw(x) (9)

is a solution of the partial differential equation. To establish the
theorem, simply takew to be C∞ with support in [0,∞).
The next theorem is an ‘‘anti estimate’’ result. �

Theorem 3. Let 0 ≤ a < b < ∞, 0 ≤ c < d < ∞ and
0 < ε < 2π be given, and let Q be any positive integer. Then there
does not exist a constant C such that

‖u‖L2((0,2π)×(a,b)) ≤ C‖u‖HQ ((0,ε)×(c,d)) (10)

for all spatially 2π-periodic solutions of uxt = αu.

Proof. Pick any integerM . At t = 0, we prescribe a smooth initial
condition φ(x) with the properties that φ(x) = 0 for x ∈ (0, ε), φ
is not identically zero, and∫ 2π

0
xkφ(x) dx = 0 (11)

for k = 0, 1, . . . ,M . In terms of the Fourier coefficients, this yields
the conditions∑
n6=0

an exp(inx) = 0 (12)

for x ∈ (0, ε), a0 = 0, and∑
n6=0

n−kan = 0 (13)

for k = 1, . . . ,M . Let now

fk(x) =
∑
n6=0

n−kan exp(inx). (14)

Since dkfk(x)/dxk = 0 for x ∈ (0, ε), and fk(0) = f ′k(0) =
· · · = f (k−1)k (0) = 0, it follows that fk(x) = 0 for x ∈ (0, ε) and
k = 0, . . . ,M .
We have

exp(−iαt/n) =
∞∑
k=0

(−iαt)k

k!
n−k, (15)

and by using this in the Fourier series (6), we find

u(x, t) =
∞∑
k=0

fk(x)
(−iαt)k

k!
. (16)

For x ∈ (0, ε), we therefore find

u(x, t) =
∞∑

k=M+1

(−iαt)k

k!
fk(x). (17)

We therefore find

‖u‖L2((0,ε)×(c,d)) ≤
∞∑

k=M+1

(d|α|)k

k!
‖fk‖L2(0,ε)

≤ ‖φ‖L2(0,2π)

∞∑
k=M+1

(d|α|)k

k!
. (18)

We can make the sum on the right hand side arbitrarily small by
choosing M large. Derivatives of u can be bounded in a similar
fashion; note that f ′k(x) = ifk−1(x), and hence, for x ∈ (0, ε),

ux(x, t) =
∞∑

k=M+1

ifk−1(x)
(−iαt)k

k!
,

ut(x, t) =
∞∑
k=M

−iαfk+1(x)
(−iαt)k

k!
. (19)

These sums can be analyzed in exactly the same fashion as the sum
for u. On the other hand, it is easy to see from (6) that

‖u‖L2((0,2π)×(a,b)) ≥ C‖φ‖L2(0,2π) (20)

with a constant that depends only on a, b and α. �

3. Viscoelastic shear flows

For simplicity of exposition, we shall stick to a single mode
Jeffreys model; it is straightforward to extend similar arguments
to multi mode Maxwell or Jeffreys models as studied in [11]. We
shall thus consider a problem of the form

αutt + βut + γ u = uxxt + µuxx, (21)

with boundary conditions u(0, t) = u(π, t) = 0. Since the results
we shall discuss do not depend on the direction of time, we assume
w.l.o.g. that α > 0. We shall also assume that αµ2 − βµ+ γ 6= 0.
By substituting u = exp(−µt)v, we can transform to a problem
with µ = 0.
We expand u in a Fourier series

u(x, t) =
∞∑
n=1

an(t) sin(nx), (22)

and we obtain the ordinary differential equations

αän + (β + n2)ȧn + γ an = 0. (23)
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