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Abstract

We present a continuous feedback stabilizer for nonlinear systems in the strict-feedback form, whose chained integrator part has the power
of positive odd rational numbers. Since the power is not restricted to be larger than or equal to one, the linearization of the system at the
origin may fail. Nevertheless, we show that the closed loop system is globally asymptotically stable (GAS) with the proposed continuous
(but, possibly not differentiable) feedback. We formulate a condition that enables our design by characterizing the powers of the given system.
The condition also shows that our result is an extension of Qian and Lin [Non-lipschitz continuous stabilizers for nonlinear systems with
uncontrollable unstable linearization, Systems Control Lett. 42 (2001) 185–200] where the power of odd positive integers has been considered.
New result on the global finite time stabilization problem is also presented.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In practice, there exist systems that do not have the first
approximation at the origin, e.g., a leaky bucket whose dynam-
ics is given by ḣ=−C

√
h [13, p. 41] or the hydraulic control

systems [15]. Partly motivated by this fact, we construct a con-
tinuous (but possibly nondifferentiable) state feedback stabi-
lizer which globally stabilizes a single-input nonlinear system
in the strict-feedback form given by

ẋ1 = x
r1
2 + �1(x1)

ẋ2 = x
r2
3 + �2(x1, x2)

...

ẋn = urn + �n(x1, . . . , xn), (1)

where �i (x1, . . . , xi), i= 1, . . . , n, are C1 functions vanishing
at the origin and ri’s are rational numbers whose numerators
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and denominators are all positive odd integers (we will call
such ri a positive odd rational number). We stress that if ri < 1,
then the system is not linearizable at each point x ∈ Rn with
xi+1=0 as well as at the origin, hence the standard backstepping
design, which requires smoothness of the vector field, does not
work directly.

This is a sharp contrast to the previous works [2–4,9,11,14]
which have considered a system whose right-hand side is con-
tinuously differentiable in the state x, or all ri’s are greater
than or equal to 1 so that its linearization at the origin may
be uncontrollable. In [9,11,14], they propose a state feedback
controller for the system (1) in which all ri’s are positive
odd integers. Lin and Qian [9] explicitly construct, using
a tool called adding a power integrator, a globally stabiliz-
ing smooth feedback control law for system (1) under the
condition that the odd integer powers ri are in decreasing
order (i.e., r1 � · · · �rn �1), and under a growth condition
that |�i (x1, . . . , xi)|�(|x1|ri + · · · + |xi |ri )�i (x1, . . . , xi),
i = 1, . . . , n, where each �i (·) is a smooth nonnegative func-
tion. The decreasing assumption and the growth condition
have been removed in [4,11] while a continuous (instead
of smooth) feedback is obtained in [11] and a smooth

http://www.elsevier.com/locate/sysconle
mailto:jh100@snu.ac.uk
mailto:cheongsg@hotmail.com
mailto:hshim@snu.ac.kr
mailto:jhseo@snu.ac.kr


J. Back et al. / Systems & Control Letters 56 (2007) 742–752 743

but time-varying feedback is designed in [4]. More generally,
a triangular system

ẋi = fi(x1, . . . , xi+1), i = 1, . . . , n− 1,

ẋn = fn(x1, . . . , xn)+ u

is studied in [2,3], but it is assumed that all fi(·)’s are C∞ so
that its linearization at the origin does exist.

In this paper, we design a C0 state feedback control law as
well as a C1 (positive definite and proper) Lyapunov function
to make the origin globally asymptotically stable (GAS). The
control law has an interesting feature: it contains some expo-
nents (or powers) which are determined by a set of inequalities
during the design procedure (thus, they are design parameters).
These exponents are also closely related to the Lyapunov func-
tion used to prove the stability. The design procedure shows its
efficiency when we discuss the finite time stabilization prob-
lem [1,5] since a slight change of the inequalities involved in
the asymptotic stabilization problem ensures the existence of
finite time stabilizer. One drawback of the proposed existence
condition (the inequalities) is that it is not easy to check in gen-
eral (although it can be converted to linear matrix inequality
(LMI)). Thus, in order to avoid further difficulties, we provide
explicit design guidelines for some special cases of ri’s.

The paper is organized as follows. In Section 2.1, we state
our main theorem for global stabilization whose proof is given
in Section 2.2. Global finite time stabilization problem is dis-
cussed in Section 2.3. In Section 2.4, the conditions proposed
in the main theorems of Sections 2.1 and 2.3 are discussed in
detail, where some relation to the previous work [11] is also
pointed out. Finally, we conclude the paper in Section 3.

For convenience, let us define the set of all rational numbers
whose numerators and denominators are all positive odd inte-
gers by Qodd. Note that the set Qodd is closed under multipli-
cation, division and odd number of additions, but is not closed
under even number of additions or subtraction, and that, there-
fore, xa+b or xc(a+b) for a, b, c ∈ Qodd is a positive definite
function of x.

2. Main results

2.1. Statement of main theorem

We now state our main theorem.

Theorem 1. Suppose that, for the system (1), ri ∈ Qodd, i =
1, . . . , n. If there exist �0, �1, . . . , �n ∈ Qodd such that

�0, . . . , �n �1, (2)

r1

�1
� 1

�0
,

r2

�2
� min

{
1

�0
,

1

�1

}
, . . . ,
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�0
,

1
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1
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}
, (3)

0� 1

�0
− r1

�1
� 1

�1
− r2

�2
� · · · � 1

�n−1
− rn

�n

, (4)

then there exists a C0 feedback controller u=u(x) with u(0)=0
which renders the origin of the closed loop system GAS. In
addition, if the assumption holds with all �i =1 (i=1, . . . , n),
then a smooth feedback controller u(x) exists.

Remark 1. Note that from (4), the condition �i = 1 (i =
0, . . . , n) implies 1�r1 � · · · �rn. Note also that, once a set
of �i’s satisfying the conditions (2)–(4) is found, (q�i ) with
q ∈ Qodd also satisfies the conditions if (2) holds with them.
On the other hand, the value of rn does not restrict the existence
a set of �i’s for the conditions (because a sufficiently large �n

can always be chosen), which is indeed related to the fact that
the input term urn of the system (1) can be simply replaced by
another control v.

2.2. Constructive proof of the main theorem

In order to prove Theorem 1, we construct a feedback sta-
bilizer through a modified backstepping procedure. We would
like to point out that, unlike the conventional backstepping
[8] or the construction of [11], the control Lyapunov func-
tions at every step are chosen simultaneously considering
the design of later steps to come. (See [4,7] for similar ap-
proaches.) To enable this, we have formulated, through the
conditions of Theorem 1, a key property necessary for selecting
a control Lyapunov function at each step. (Recall that the
selection of �i is affected by the set of whole ri’s in the
assumption.) In other words, we will use the values of �i ,
which have been obtained from (2)–(4), in the backstepping
procedure.

Furthermore, we will frequently employ the following in-
equalities borrowed1 from [11].

• For x, y ∈ R and 1�q ∈ Qodd, we have

|x + y|q �2q−1|xq + yq |. (5)

• For c, d, � ∈ R, if c > 0, d > 0 and � > 0, we obtain

|x|c|y|d � c

c + d
�|x|c+d + d

c + d
�−

c
d |y|c+d . (6)

• For a, b, c ∈ R, if 0 < a�b�c, it is true that

|x|b � |x|a + |x|c = |x|a(1+ |x|c−a), x ∈ R, (7)

because |x|b � |x|a � |x|a + |x|c for |x|�1 and |x|b � |x|c �
|x|a + |x|c for |x|> 1.
• Let �i : Ri → R be a C1 function with �i (0)=0. Then, there

exists a smooth nonnegative function �i (x1, x2, . . . , xi) such
that

|�i (x1, . . . , xi)|�(|x1| + · · · + |xi |)�i (x1, . . . , xi). (8)

1 Inequalities (5) and (6) are proved (with slight extension) in a similar
way to [11, Lemmas 2.3, 2.4], respectively, while inequality (8) is quite
standard.
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