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We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-
inertial frame of reference to simulate a wide range of challenging biological flow problems. The method
incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the
resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations
may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using
the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, ] Comput Phys, 2007). The
incompressible flow equations are formulated in a general non-inertial frame of reference to enhance
the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify
areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary
conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel
computing communication strategies to transfer information among sub-domains. The governing
equations are discretized using a second-order accurate finite-volume approach and integrated in time
via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation
at grid interfaces suitable for incompressible flow fractional step methods are implemented and evalu-
ated. The method is verified and validated against experimental data, and its capabilities are demon-
strated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic

left ventricle with a mechanical heart valve implanted in the aortic position.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Handling arbitrarily complex geometries and/or moving bound-
aries is a major challenge in simulations of real-life biological
flows, which requires creative approaches for mesh generation
and boundary condition implementation. Many methods, includ-
ing Chimera overset grid [1,2], immersed boundary methods
[3,4], level set methods [5,6], vortex methods [7,8], and penaliza-
tion methods [9-11] have been developed and successfully applied
to specifically address this challenge. In particular, major advances
in immersed boundary methods, which are of interest in this work,
have made it possible to efficiently study flow problems that are
far more complicated than those that traditional computational
fluid dynamics (CFD) methods (simple structured or unstructured
grids) could handle in the past. Recent successful applications of
immersed boundary methods include, among others, simulations
of prosthetic heart valves [3,12-14], biofilming processes [15],
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flexible fibers [16], flapping filaments [17], aquatic swimming
[18-20], vortex-induced vibrations [21], etc.

The most attractive feature of immersed boundary methods is
the inherent separation of grid generation from the underlying
geometry. The computational domain, which contains both the fluid
and embedded solid regions, is discretized with a single, fixed, non-
boundary conforming mesh system, most commonly a Cartesian
grid. The effect of immersed boundaries is accounted for by adding
forcing terms, either explicitly or implicitly, to the governing equa-
tions of fluid motion such that the presence of the appropriate
boundary conditions at the location of the immersed boundaries
are satisfied [3,4]. Depending on the specific approach employed
to enforce the boundary conditions at immersed bodies, immersed
boundary methods are typically classified as diffused [3,17,22] or
sharp-interface methods [18,23-25]—see [4] for a recent review of
various approaches. Despite many attractive features of the im-
mersed boundary methods, a number of important limitations
makes their application rather challenging for certain types of flows.

The first such limitation arises when applying an immersed
boundary method to a flow problem involving moving bodies
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Fig. 1. Anatomical geometry of the left heart system consisting of multiple
branching and large moving boundaries.

undergoing large displacements and/or complex multi-connected
geometries. For example, when the immersed body is displaced
within the background grid over large distances, such as in the case
of a falling sphere or a swimming fish, the entire background grid
region within which the body is displaced should be discretized
with high numerical resolution, which could increase the compu-
tational costs considerably. This problem can be solved either by
adaptively refining the grid following the motion of the swimmer
[22,26-28], or, when appropriate, by choosing a non-inertial frame
of reference with respect to which the displacement of the body is
reduced or completely eliminated [29-31]. Immersed boundary
methods in conjunction with the non-inertial reference frame for-
mulation have indeed been used to reduce the computational cost
in simulations of such problems [32,29,30]. Note that, however, it
is obviously not possible to apply the non-inertial formulation to
problems involving multiple moving bodies. Nevertheless, for
problems involving a single moving body the non-inertial frame
formulation is preferred over the adaptive grid method because
of its overall simplicity and lower computational costs. Further-
more, efficient parallelization of an adaptive grid solver is not
straight forward and continues to be the subject to active research
[27]. The standard non-inertial frame formulation of the Navier-
Stokes equations contains source terms for the translational,
Coriolis, and centrifugal accelerations. Such source terms reduce
the stability of the numerical algorithm. For that a conservative
formulation has been proposed, which does not have source terms
and has improved stability properties [31,33]. This formulation,
however, has thus far been applied in conjunction with immersed
boundary methods only on Cartesian grids [30].

The second limitation arises when the Cartesian-grid based im-
mersed boundary methods are applied to internal flow problems,
especially multi-branching configurations typically encountered
in cardiovascular anatomies, pulmonary airways, etc. (Fig. 1).
Although in such problems one could use the brute-force approach,
namely discretizing the entire computational domain with a single
structured background grid and embedding the entire complex
geometry of the solid walls as an immersed body, such treatment
results in a large number of wasted computational nodes located
outside the regions of interest and is thus very impractical [34].
To overcome such difficulties different strategies have been

proposed. One approach is to discretize the multi-connected do-
main using body-fitted unstructured grids [35,36] while another
is to recast the structured Cartesian formulation into an unstruc-
tured Cartesian grid layout [34]. These methods, however, change
the structured layout of the grid making it difficult to use efficient
parallel structured solvers. A more versatile modeling paradigm,
which we propose in this work, is to integrate the overset grid ap-
proach with structured curvilinear grids, and a sharp-interface im-
mersed boundary method. For example, with reference to Fig. 1,
the left ventricle, which undergoes large deformation during the
cardiac cycle, is embedded in a background curvilinear grid and
treated as an immersed boundary, the aorta may be discretized
with a separate boundary-fitted curvilinear grid or also treated as
an immersed boundary in a background curvilinear domain
approximating the shape of the aorta, and the mechanical valve
prosthesis or any other native or prosthetic aortic valve, which typ-
ically undergoes large displacement and/or deformation, is also
treated as an immersed boundary. The background left ventricle
and aorta grids overlap in the left-ventricle outflow track region
and the solutions in these two sub-domains communicate using
the overset grid approach. Such hybrid approach could be ex-
tended to include other blood vessels in the simulations, such as
the subclavian and carotid arteries shown in Fig. 1, and used to
model efficiently a broad range of complex internal flows with
embedded immersed boundaries undergoing large displacement
and/or deformation. It is the main objective of this paper to
develop the computational infrastructure required to achieve such
general and versatile modeling paradigm.

In traditional overset grid formulations, pioneered by [37-40,1],
a complex flow domain is decomposed into a set of simpler, over-
lapping subdomains such that it can be discretized easily with a
set of simple, boundary conforming, curvilinear coordinates [41].
The governing equations are solved independently on each subdo-
main and information from one subdomain is transferred to an-
other subdomain by specifying the boundary conditions at their
interfaces [42,41]. Our method only requires the mass (or volume)
flux at the boundaries, i.e., only the mass flux is exchanged at the
boundaries and it is corrected to satisfy the conservation of mass
on each subdomain. This is similar to the flux-exchange method
[43-46] (not the state-exchange method based on domain decom-
position [47-49]) employed in coupling continuum and molecular
dynamics domains in multi-scale simulations [50]. More specifi-
cally, the flux-exchange method is based on the direct exchange
of flux information in the overlap domain between the particle re-
gion and the continuum region, and relies on the matching of fluxes
of mass, momentum and energy [48]. In the state-exchange method
the state information between the particle simulation and the
Navier-Stokes equations is transferred through an overlap region
where the particles’ dynamics is constrained; the constrained
dynamics is often imposed via a dynamic relaxation technique [48].

The simplest approach to specify the boundary conditions at the
interface is to interpolate all the variables from one subdomain to
the other [1,51,2,52]. Such interpolation, however, does not neces-
sarily satisfy global conservation, and for that a critical aspect of the
overset grid method is the development of conservative interpola-
tion schemes [41,42,53-56]. However, if a fractional step method is
used to advance the incompressible flow governing equations in
time the intermediate velocities are not conservative quantities—
do not satisfy mass conservation. Therefore, any type of conserva-
tive interpolation from such non-conservative velocities cannot
satisfy global mass conservation. Consequently, an explicit mass-
imbalance correction needs to be added to the interpolated velocity
field to ensure global mass conservation on each overlapping grid.
Zang and Street [57] add such an explicit correction, which is pro-
portional to the local flux at each cell, and Burton and Eaton [58]
add an explicit correction, which is proportional to the local area
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