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Monotonicity properties for the viable control of discrete-time systems
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Abstract

This paper deals with the control of nonlinear systems in the presence of state and control constraints for discrete-time dynamics in finite-
dimensional spaces. The viability kernel is known to play a basic role for the analysis of such problems and the design of viable control
feedbacks. Unfortunately, this kernel may display very nonregular geometry and its computation is not an easy task in general. In the present
paper, we show how monotonicity properties of both dynamics and constraints allow for relevant analytical upper and lower approximations of
the viability kernel through weakly and strongly invariant sets. An example on fish harvesting management illustrates some of the assertions.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let us consider a nonlinear control system described in dis-
crete time by the difference equation{
xt+1 = f (xt , ut ) ∀ t ∈ N,

x0 given,
(1)

where thestate variablext belongs to the finite-dimensional
state spaceX = RnX , thecontrol variableut is an element of
the control setU = RnU while thedynamicsf mapsX × U

into X.
A controller or a decision maker describes “desirable config-

urations of the system” through a (non empty) setD ⊂ X × U

termed thedesirable set

(xt , ut ) ∈ D ∀t ∈ N, (2)

where D includes both system states and controls con-
straints. Typical instances of such a desirable set are given
by inequalities requirements:D = {(x, u) ∈ X × U|∀i =
1, . . . , p, gi(x, u)�0}.
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The state constraints setassociated withD is obtained by
projecting the desirable setD onto the state spaceX:

V0 := ProjX(D) = {x ∈ X|∃u ∈ U, (x, u) ∈ D}. (3)

Such problems of dynamic control under constraints refer
to viability [1] or invariance[11] framework. Basically, such
an approach focuses on inter-temporal feasible paths. It has
been applied for instance to models related to the sustain-
able management of resource and bio-economic modeling as
in [3–5,12,15,16,19]. From the mathematical viewpoint, most
of viability and weak invariance results are addressed in the
continuous time case. However, some mathematical works deal
with the discrete-time case. This includes the study of numerical
schemes for the approximation of the viability problems of the
continuous dynamics as in[1,17]. Important contributions for
the discrete-time case are also captured by the study of the pos-
itivity for linear systems as in[6], or by the hybrid control as in
[2,20]. In the control theory literature, problems of constrained
control lead to the study of positively invariant sets, particularly
ellipsoidal and polyhedral ones for linear systems (see[9,13,14]
and the survey paper[10]); reachability of target sets or tubes
for nonlinear discrete-time dynamics is examined in[7].

Viability is defined as the ability to choose, at each time step
t ∈ N, a controlut ∈ U such that the system configuration
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remains desirable. More precisely, the system is viable if the
following set is not empty:

V(f,D) :=
{
x0 ∈ X

∣∣∣∣ ∃ (u0, u1, . . .) and(x0, x1, . . .)

satisfying(1) and(2)

}
. (4)

The setV(f,D) is called theviability kernelassociated with
the dynamicsf and the desirable setD. By definition, we have
V(f,D) ⊂ V0 = ProjX(D) but, in general, the inclusion is
strict. For a decision maker or control designer, knowing the
viability kernel has practical interest since it describes the states
from which controls can be found that maintain the system
in a desirable configuration forever. However, computing this
kernel is not an easy task in general.

The present paper aims at giving explicit upper and lower
approximations of this kernel using weakly (viable) or strongly
invariant domains in the specific context of monotonicity prop-
erties of both constraints and dynamics.1 To achieve this, let us
recall what is meant by weakly or strongly invariant domains.

A subsetV of the state spaceX is said to bestrongly invariant
for the dynamicsf in the desirable setD if

∀x ∈ V, ∀u ∈ U, (x, u) ∈ D ⇒ f (x, u) ∈ V. (5)

That is, if one starts fromV, any admissible control transfers the
state intoV providing, in any case, a desirable configuration.
This is generally a too demanding requirement.

Similarly, a subsetV is said to beweakly invariantfor the
dynamicsf in the desirable setD, or aviability domainof f
in D, if

∀x ∈ V, ∃u ∈ U, (x, u) ∈ D and f (x, u) ∈ V. (6)

That is, if one starts fromV, a suitable control may transfer
the state inV and the system into a desirable configuration. In
particular, it is worth pointing out that any desirable equilibrium
is a viability domain off in D. A desirable equilibriumis
an equilibrium of the system that belongs toD, that is a pair
(x̄, ū) ∈ D such thatx̄ = f (x̄, ū).

Moreover, according to viability theory[1], the viability ker-
nel V(f,D) turns out to be the union of all viability domains:

V(f,D)=
⋃ {

V⊂V0, V viability domain forf in D
}

.

(7)

For the sake of completeness, we recall the proof in the Ap-
pendix (see Proposition 12). A major interest of such a prop-
erty lies in the fact that any viability domain for the dynamics
f in the desirable setD provides alower approximationof the
viability kernel.

An upper approximationVk of the viability kernel is given
by the so-calledviability kernel until time k associated withf
in D:

Vk :=
{
x0 ∈ X

∣∣∣∣∣ ∃ (u0, u1, . . . , uk) and(x0, x1, . . . , xk)

satisfying(1) for t = 0, . . . , k − 1
and(2) for t = 0, . . . , k

}
.

(8)
1 No topological assumptions are needed. Only for Proposition 8, we do

require a continuity property.

We have

V(f,D) ⊂ Vk+1 ⊂ Vk ⊂ V0 = V0 ∀k ∈ N. (9)

It may be seen by induction that the decreasing sequence of
viability kernels until timek satisfies the following dynamic
programming equation:

V0=V0 and Vk+1 = {x∈Vk | ∃u∈U, f (x, u)∈Vk and

(x, u) ∈ D}. (10)

By (9), such an algorithm provides approximation from above
of the viability kernel as follows:

V(f,D) ⊂
⋂
k∈N

Vk = lim
k→+∞↓Vk. (11)

In [1], conditions for the equality to hold true are exposed (are
required the compacity for the constraints and upper semicon-
tinuity with closed images for the set-valued map associated
with the controlled dynamics).

Once the viability kernel, or any approximation, or a viabil-
ity domain is known, we have to consider the management or
control issue, that is the problem of selecting suitable controls
at each time step. For any viability domainV and any state
x ∈ V, the following subsetUV(x) of the decision setU is
not empty:

UV(x) := {u ∈ U|(x, u) ∈ D andf (x, u) ∈ V}. (12)

Therefore,UV(f,D)(x) stands for the largest set ofviable con-
trols associated withx ∈ X. Then, the decision design consists
in the choice of a viablefeedbackcontrol, namely any selection
� : X → U which associates with each statex ∈ V(f,D) a
controlu = �(x) satisfying�(x) ∈ UV(f,D)(x).

The paper is organized as follows. Section 2 is devoted to
the definitions of monotonicity for both the dynamics and con-
straints. Then, Section 3 exhibits lower and upper approxima-
tions of the viability kernel in this monotonicity context. An
example is exposed in Section 4 to illustrate some of the main
findings.

2. Monotonicity properties

In this section we define what is meant by monotonicity of
the desirable setD together with the dynamicsf , both with
respect to statex and controlu.

2.1. Set monotonicity

In what follows, the state spaceX and the control spaceU
areX ⊂ RnX andU ⊂ RnU supplied with the componentwise
order:x′ �x if and only if each component ofx′ is greater than
or equal to the corresponding component ofx:

x′ �x ⇐⇒ x′
i �xi, i = 1, . . . , n.

We also define the maximumx ∨ x′ of (x, x′) as follows:

x ∨ x′ := (x1 ∨ x′
1, . . . , xn ∨ x′

n)

= (max(x1, x
′
1), . . . ,max(xn, x

′
n)).
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