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a b s t r a c t

Based on an efficient Riemann solver, a remapping-free ALE method (RALE) for multi-material fluids with
general equations of state is proposed. The basic idea of constructing the RALE is to couple the Lagrangian
method with a remapping-free ALE-type method. In order to keep the sharpness of a material interface,
the Lagrangian formulation is employed for tracking the material interface, where the Lagrangian velocity
of nodes and Lagrangian fluxes are designed. In single material regions, the numerical fluxes are con-
structed on moving meshes which move nodes to the regions with large gradients to increase the numer-
ical accuracy, and the explicit remapping stage is avoided because of the new discrete scheme. The
inverse Hermite interpolation argument is employed in solving the Riemann problem with general
EOS, consequently, reducing iteration steps greatly and resulting in an efficient and robust Riemann sol-
ver. A number of numerical examples are presented.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Traditionally, numerical methods for fluid dynamics have fallen
into two camps: Eulerian methods and Lagrangian methods. The
Eulerian method is robust, easy in coding, and capable of running
under severe flow conditions, such as large flow deformation, and
has been well developed and widely applied (see e.g. [1–3]), but
may result in badly smeared material interfaces for multi-material
flows or wave structure due to numerical diffusion. As to the
Lagrangian method, the meshes move with the fluids and there is
no mass flux across moving interfaces, material interfaces remain
exact as they travel with cells, the Lagrangian method is therefore
capable of producing sharp material interfaces, but may lead to
mesh distortion and tangling, causing inaccuracy and even break-
down of computation. However, due to the distinguishable features
of the Lagrangian method, such as the capability of capturing mate-
rial interfaces and dealing with free boundaries, the method has
been developed considerably and applied to a variety of scientific
and engineering problems in the past decades [4–9].

In order to improve numerical accuracy, the development of
mesh movement methods have recently attracted much attention.
To avoid mesh distortion and tangling in a Lagrangian method, a
well-known Arbitrary Lagrangian–Eulerian (ALE) technique has
been developed, see for example, [10–17]. In the ALE method, the
numerical algorithm covers from Lagrangian to Eulerian methods

through a rezoning step to fix a distorted mesh. Due to the smooth-
ing techniques in the rezoning step, a regular mesh can be obtained,
but numerical errors could be easily induced by the remapping
which transfers flow variables from a old mesh to a new one. A
similar method is the so-called moving mesh method studied
intensively in the recent years. Generally, the moving mesh method
consists of two steps: after each Eulerian step, a new mesh is gen-
erated according to certain requirements, such that nodes move
to the regions with large changes of the physical quantities to in-
crease accuracy of numerical results. In [18,19], the authors move
nodes according to a flow gradient-dependent monitor function,
so that the nodes of a new mesh can concentrate in the regions with
large gradients. Then, with the introduction of the new mesh, all
flow variables are interpolated from the old mesh to the new one.
In [20] the authors proposed another moving mesh technique by
defining adaptive grid speed in each time step to improve the reso-
lution of shocks and contact discontinuities. The key point in [20] is
to construct the finite volume scheme on time–space polyhedron or
quadrilateral meshes and then numerical fluxes on interfaces.
Recently, this method was further developed by many researchers,
see for example [21,22]. In [23], the authors developed an unified
and efficient moving mesh method, which is one of ALE type
schemes, but remapping-free (without explicit remapping), the
basic idea is to only construct the numerical fluxes across cell inter-
faces of a moving mesh and then to update the variables in the
inertial frame.

For the multi-material flow simulations, the development of
accurate numerical schemes has become one of the most important
research topics in computational fluid dynamics, and a number of

0045-7930/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2012.10.005

⇑ Corresponding author. Tel.: +86 10 62014411 2968.
E-mail addresses: gxni@iapcm.ac.cn (G. Ni), jiang@iapcm.ac.cn (S. Jiang),

wang_shuanghu@iapcm.ac.cn (S. Wang).

Computers & Fluids 71 (2013) 19–27

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid

http://dx.doi.org/10.1016/j.compfluid.2012.10.005
mailto:gxni@iapcm.ac.cn
mailto:jiang@iapcm.ac.cn
mailto:wang_shuanghu@iapcm.ac.cn
http://dx.doi.org/10.1016/j.compfluid.2012.10.005
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


schemes have been proposed. One of the typical methods is to solve
an extended conservative system, where additional conservation
equations are introduced to the original fluid equations to capture
a fluid interface, such as the level set functions, the mass fractions
and the ratio of specific heats (c-model), see, for example, [24–26].
In order to maintain the pressure equilibrium and the mass fraction
positivity, and to eliminate spurious oscillations near material inter-
faces, several non-conservative approaches to capture the contact
discontinuities using an additional non-conservative governing
equation have been proposed [27,28]. In [29], the ghost fluid meth-
ods are presented, where the ghost cells and isobaric fix techniques
are used to keep the density profile from smearing. Unfortunately, it
cannot work consistently and efficiently when applied to a strong
shock. To overcome this difficulty, a modified ghost fluid method
is proposed and developed for more robustness and consistency
[30]. By incorporating the conservative c-model into the finite vol-
ume BGK scheme, a c-model BGK method for compressible multi-
component flow computation was proposed in [31,32], and an
efficient and accurate BKG scheme for multifluids is obtained.

In this paper, we will propose a remapping-free ALE method for
multi-material fluids (abbrev. RALE) with general equations of
states by employing an efficient Riemann solver. The basic idea
of constructing the RALE is to couple the Lagrangian method of
tracking material interfaces with the remapping-free ALE-type
method within a single material domain. In order to keep the
sharpness of material interfaces, the Lagrangian velocity and fluxes
are constructed on the material interfaces, using the node-centered
solver developed by Maire et al. [6], and the velocity of the mesh
cells away from the material interfaces are determined by diffusive
mechanism (velocity), for which many approaches can be used to
get the diffusive velocity [33,34]. Then, the fluxes are constructed
on the moving meshes, so that both accuracy and robustness are
taken into account. Consequently, a generalized ALE method for
multi-material flows is constructed.

An important feature of the RALE is the use of an efficient
Riemann solver for general EOS to get the velocity of mesh move-
ment and fluxes. For perfect gases, the Newton iteration can be
used to get an exact Riemann solution, but for a non-perfect gas,
it could not work well in many cases. To circumvent this drawback,
here we employ an inverse Hermite interpolation argument [35]
for general EOS. In the inverse Hermite interpolation argument,
we first approximate the inverse function of the pressure by parab-
ola, and the root of the inverse function can be easily found by
solving algebra equations. Then, we obtain an exact solution by
iteration over smaller domains. In this manner, the number of iter-
ations is greatly reduced, thus the RALE is more efficient and robust
than the linear interpolation.

This paper is organized as follows. In Section 2, the Riemann
problem for general EOS is studied. In Section 3, we construct the
RALE method for multi-material fluids, and the method of deter-
mining the mesh velocity is presented, while in Section 4, numer-
ical examples to demonstrate the accuracy and robustness of the
proposed scheme are given.

2. Riemann solver for general equations of state

To study the Riemann solver for general equations of state, we
begin with the one-dimensional system. The motion of one-dimen-
sional compressible inviscid flows is described by the conservation
laws of mass, momentum and energy, which can be written in the
following differential form:

@q
@t þ

@qu
@x ¼ 0;

@qu
@t þ

@ðqu2þpÞ
@x ¼ 0;

@qE
@t þ

@ððqEþpÞuÞ
@x ¼ 0;

8>><>>: ð2:1Þ

where qE ¼ qeþ 1
2 qu2, and equation of state p = p(q, e) is needed to

close the system.
In the construction of numerical fluxes of our scheme, we need

to solve the Riemann problem for the system (2.1), and we will
present an efficient algorithm for the Riemann problem of (2.1)
with general EOS, which will be used in the next section.

2.1. General equations of state

In general, an equation of state (EOS) relates three thermody-
namic variables: the pressure, the density and the internal energy.
The equation of state varies with materials, and it is a complex
function of the molecular and atomic structure of a given sub-
stance, the most convenient form of the equation of state for a
perfect gas is p = (c � 1)qe, the pressure is a simple function of
the density and the internal energy, where c is the ratio of the
specific heat at constant pressure to that at constant volume, this
form is commonly used in theoretic analysis and numerical
methods.

We will consider the following three kinds of EOS. The first one
is for a stiffened gas, which can be written in the following form:

p ¼ ðc� 1Þqe� cp1; ð2:2Þ

where p1 is the prescribed pressure-like constant and can be used
to describe the material property, for example, c = 5.5, p1 = 4921.15
for water.

The second one is the binomial type EOS of the form:

p ¼ ðc� 1Þqeþ c2
0ðq� q0Þ; ð2:3Þ

where q0, c0 are the substance parameters. It is a much more real-
istic equation of state for solids.

The third one is the so-called Mie-Gruneisen type EOS in the fol-
lowing form:

p ¼ ðc� 1Þqeþ q0c2
0

l� 1
ðc� 1Þðd� 1Þ þ c� l

l
ð1� dlÞ

� �
; ð2:4Þ

where d = q/q0. Eq. (2.4) is designed to duplicate the linear shock
particle velocity relation at low pressure and to extrapolate the
Thomas–Fermi limit at high pressure. There are also parameters
that allow (2.4) to describe the unloading of a shocked material to
vapor phase.

An approximate form of (2.4) by the binomial EOS is given in
[35], where the parameters ~c; ec0 ;fq0 in (2.3) are given by:

~c ¼ 1þ 1
q
@p
@e
; fc0

2 ¼ @p
@q
� e

q
@p
@e
; fq0fc0

2 ¼ q
@p
@q
� p;

this approximation works satisfactorily in many cases.

2.2. Inverse Hermite interpolation for the Riemann problem

In out RALE scheme, a Riemann solver is needed in two aspects:
on one hand, for the finite volume scheme in a single material re-
gion, we need to solve the Riemann problem to get the numerical
fluxes on the moving meshes. On the other hand, for a material
interface, we also have to solve the Riemann problem across the
material interface to get the nodal velocity and the Lagrangian
fluxes as well. For a perfect gas, the Newton iteration is sufficient
to get the Riemann solution, but for a non-perfect gas, the Newton
iteration will diverge in many cases, in particular, for the complex
EOS. In this subsection, we will present an efficient inverse Her-
mite interpolation to solve the Riemann problem with the above
EOS.

Suppose that we have two constant states, namely the left is
(q1, u1, p1), and the right is (q2, u2, p2), the basic configurations
of the Riemann problem include two rarefaction waves, two shock
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