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a b s t r a c t

This paper presents computational analysis of a fluid–structure interaction for a flapping flexible plate
moved with propulsive velocity in quiescent fluid to investigate the effect of flexibility on propulsive
velocity, which is critical for fish, birds, insects, and micro air vehicles with flapping wings. This study
found that the mechanism of the flapping plate moved with propulsive velocity differs from that of
the plate fixed in the propulsive direction, and the flexibility of the plate improves the propulsive velocity
to create an optimal propulsion. The lattice Boltzmann method with an immersed boundary technique
using a direct forcing scheme is used to simulate the fluid, while the finite element method with Euler
beam elements is used to model structural deformation of the flexible plate. We developed the moving
domain scheme to reversely move the domain at the velocity of the plate to simulate the moving plate.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

We computationally analyzed the unsteady flow and resulting
propulsive velocity of a flapping flexible plate used to represent
the mechanism of real locomotion of fish and flight of birds. Dick-
inson et al. [6] showed that the three mechanisms of insect flight
used to enhance propulsion are delayed stall, rotational circulation,
and wake capture. They found that rotational circulation and wake
capture at the end of the translational stroke are important to en-
hance propulsion for forward movement, and the phase sequences
between the translational stroke reversals and rotations are impor-
tant to generate propulsion. Sun and Tang [11] conducted numer-
ical analysis of flow around the flapping wing of a fruit fly using a
rigid plate. Their results agreed well with those of Dickinson et al.
[6]. Medjroubi et al. [39] for the first time used the spectral/hp ele-
ment method associated with the moving frame of reference to
investigate viscous flow over a two-dimensional NACA0012 airfoil
oscillating in heave. However, the real wing of an insect has flexi-
bility. Heathcote and Gursul [21] carried out experiments with a
flexible plate at the end of an airfoil and found that the effect of
chordwise flexibility is beneficial for purely heaving airfoils. Too-
mey and Eldredge [30] investigated the role of flexibility in flap-
ping wing flight using the viscous vortex particle method and
two-component wing structure connected by a single hinge with
a damped torsion spring. Unger et al. [40] considered the flexibility

of the airfoil to investigate the fluid flow around a handfoil of a sea-
gull using the finite element method. They found that flexibility
improved thrust efficiency by introducing a time dependent airfoil
stiffness. Lee et al. [41] conducted fluid–structure interaction anal-
ysis to investigate the influence of flexibility on the generation of
propulsion and to improve propulsion efficiency by optimizing
flexibility of the plate.

Among recent studies, there has been little investigation of pro-
pulsive velocity by flapping movement. Increased and stable pro-
pulsive velocity without severe fluctuation is the final goal for
fish and birds. In the present study, we investigated the propulsive
velocity of a flapping plate, and demonstrated that flexibility can
improve propulsive velocity.

Many issues must be resolved for accurate and efficient simula-
tion of a fluid–structure interaction. The treatment of a moving
fluid–solid interface is critical for the fluid solver, noise reduction
induced by the flow of the solid solver, and the coupling of both
solvers in the time domain. Fluid solvers based on the Navier–
Stokes equation are commonly used. There are a variety of meth-
ods to solve the Navier–Stokes equation in the fluid domain with
moving boundaries. These methods can be classified into two cat-
egories depending on whether a moving mesh or fixed mesh is
used. The arbitrary Lagrange–Eulerian method (ALE) [8,17,20] is
used as a moving mesh type solver that reconstructs the mesh with
the motion of a structure. It is highly accurate because of boundary
adaptability. However, if the structure had large deformations or
movements, the re-meshing procedure would be complicated.
The fictitious-domain method [7,15,32] is a solver that uses a fixed

0045-7930/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2012.10.029

⇑ Corresponding author.
E-mail addresses: jacobyee@hanyang.ac.kr (J. Lee), shlee@hanyang.ac.kr (S. Lee).

Computers & Fluids 71 (2013) 348–374

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid

http://dx.doi.org/10.1016/j.compfluid.2012.10.029
mailto:jacobyee@hanyang.ac.kr
mailto:shlee@hanyang.ac.kr
http://dx.doi.org/10.1016/j.compfluid.2012.10.029
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


mesh. Fixed mesh methods are simple and efficient because the
solver does not require re-meshing, but they are limited in accu-
rately describing the boundaries because the grid is non-adaptive.

The lattice Boltzmann method (LBM) is a computational meth-
od based on the dynamics of particles and is used to solve engi-
neering problems governed by partial differential equations.
Since the 1990s, the LBM has been widely used as a fluid solver in-
stead of solving the Navier–Stokes equation. The LBM is basically a
fixed-mesh solver. Numerous schemes are being published and
have been developed for moving complex boundaries with accu-
racy. Bouzidi et al. [9] used well-organized interpolation for the
unknown distribution of a curved boundary with precise second-
order accuracy and proposed a scheme for a general moving
boundary. Lallemand and Luo [12] developed an interpolated
bounce back scheme with second-order accuracy and applied it
to a moving cylinder in a channel. However, if the boundaries are
complex and moving, schemes that use interpolation or extrapola-
tion may not contain the needed computational information. Lee
and Lee [37] used the adaptive relaxation time method to improve
accuracy without additional information on neighboring lattices. In
order to overcome the limits of interpolation or extrapolation
schemes in moving or complex boundaries, Feng and Michaelides
[14,16] adopted an immersed boundary method with a direct forc-
ing method to the LBM to simulate particulate flows including col-
lisions. Sui et al. [23] reported on the LBM using a direct forcing
scheme with an immersed boundary method to simulate a deform-
able body in a flow. Xing and Nhan [18] applied a distributed-La-
grange-multiplier/fictitious-domain (DLM/FD) method to the LBM
to simulate fluid–structure interaction such as a flexible filament
in the wake of a cylinder. The DLM/FD method is a fixed mesh-
based method that introduces a distributed Lagrange multiplier
to enforce the fictitious fluids in the solid region to satisfy the
boundary condition in accordance with the solid motion. Wang
et al. [24–27] used the LBM to solve the energy transport equation

with complex multiphase porous geometries and established a
method to predict material properties such as the effective thermal
conductivities of porous media. Li and Ki [29] combined the LBM
with the finite difference method to simulate incompressible,
resistive magnetohydrodynamic flows. It is well-established that
the LBM is superior to conventional Navier–Stokes equation solv-
ers in special areas.

Until now, there have been impressive developments in fluid–
structure interaction solvers. Recently among these fluid–structure
interaction schemes, there have been progressive developments in
the finite element method for structure and the LBM for fluid
[31,33,35,36,38]. We combined these two solvers for fluid–struc-
ture interaction problems. Among the many different boundary
schemes of the LBM, we used immersed boundary treatment with
a direct forcing scheme for a moving fluid–structure interface and
validated our solver [41]. We developed a moving-domain method
to investigate the locally flapping plate with propulsive velocity.
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Fig. 1. D2Q9 lattice.

(b) Transformed element(a) Original element

Fig. 2. 1D bending element.

Fig. 3. The extended boundary of the moved domain.

Fig. 4. Overall accuracy of present scheme for the Taylor–Green vortex estimated
by L2-norm error.
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