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a b s t r a c t

The present paper is devoted to the analysis of MHD flow and heat transfer over permeable stretching/
shrinking surfaces taking into account a second order slip model. The purpose is to extract exact analyt-
ical solutions for the flow and heat valid under various physical conditions. Particular attention is paid for
the effects of magnetic field on the second order slip flow conditions. Results of the present analysis in the
absence of magnetic field are in excellent agreement with those available in the literature. The velocity
and temperature profiles, skin friction coefficient and Nusselt number are easily examined and discussed
via the closed forms obtained. For all the considered parameters, unique solutions are detected for the
flow over a stretching sheet, whereas solutions turn out to be multiple for some combinations of param-
eters in the case of flow over a shrinking sheet. Compared to the no-slip case, as the slip is increased, the
region of multiple solutions is found to extend.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The fluid flow over a continuously stretching or shrinking sur-
face finds many important applications in engineering processes,
such as polymer extrusion, drawing of plastic films and wires, glass
fiber and paper production, manufacture of foods, crystal growing,
liquid films in condensation process, etc., see Fisher [1]. The studies
of Sakiadis [2] and Crane [3] are the pioneering ones in this area. A
dozen of flow properties were later investigated by the followers
[4–10] using no-slip condition on the wall. However, as stated in
[11], when the fluid is particulate such as emulsions, suspensions,
foams and polymer solutions, the no-slip condition is inadequate.
In such cases the suitable boundary condition is the partial slip.
Wang [12,13] discussed the partial slip effects on the planar
stretching flow. Fang et al. [14–17] found analytical solutions rep-
resenting the hydromagnetic flow.

The applied magnetic field may play an important role in con-
trolling momentum and heat transfers in the boundary layer flow
of different fluids over a stretching/shrinking sheets. Including the
magnetic field, a variety of physical properties for the flow and
heat transfer over stretching/shrinking sheet were analytically
investigated in Turkyilmazoglu [18–20], see also the references
therein.

Recently, Fang et al. [21] considered the effects of second order
slip on the flow of a shrinking sheet and the case of stretching
sheet was studied by Vajravelu et al. [22]. It is seen that in the lit-
erature a proper analysis of second order slip flow and heat trans-

fer over a stretching/shrinking sheet with magnetic field has not
been investigated yet. Therefore, the purpose of this attempt is to
investigate the influence of second order slip on the behavior of
flow and thermal transport of an electrically conducting fluid over
a permeable stretching/shrinking sheet with two general heating
processes namely the PST and the PHF cases [18,20]. We hence de-
rive closed-form analytical solutions for the velocity and tempera-
ture profiles as well as the skin friction and heat transfer
coefficients of physical importance. We should remark that
although the analysis is similar, the present study is totally differ-
ent from those of [18,20] in that second order slip flow together
with extra form of analytical solutions are presented here. More-
over, the present work is different from that of [21] in that the
MHD effects and the resolution of energy field are not accounted
for in the shrinking sheet study of [21]. In addition to this, the re-
cent investigation of [22] over a stretching sheet was extended
here to cover for the magnetic field effects for not only stretching
but also shrinking surfaces. Another important point is that the en-
ergy equation was also solved analytically here, which was treated
numerically in [22].

The arrangement of the paper is in the following. The problem is
formulated in Section 2. The analytical solutions for both flow and
temperature fields are presented in Section 3. Section 4 contains
results and discussions. The concluding remarks are eventually gi-
ven in Section 5.

2. Formulation of the problem

Let us consider a steady, two-dimensional laminar slip flow
over a continuously stretching or shrinking sheet in an electrically
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conducting quiescent fluid coinciding with the plane y = 0, the flow
being confined to y > 0. A uniform external magnetic field of
strength B0 is supposed to act in the direction perpendicular to
the sheet. Following the analysis in [20], the governing dimen-
sional flow and energy equations of this problem read (see also
[21,22])

ux þ vy ¼ 0;

uux þ vuy ¼ muyy �
rB2

0

q
u;

uTx þ vTy ¼
k

qcp
Tyy:

ð2:1Þ

Eq. (2.1) are considered with the following boundary conditions

uðx;0Þ ¼ dcxþ Auyðx;0Þ þ Buyyðx; 0Þ; vðx; 0Þ ¼ vw; uðx;1Þ ¼ 0;

Tðx;0Þ ¼ Tw ¼ T1 þ b1x2ðPST caseÞ; �kTyðx;0Þ ¼ b2x2ðPHF caseÞ;
Tðx;1Þ ¼ T1;

ð2:2Þ

where d = 1 denotes stretching and d = �1 denotes shrinking sheets,
respectively. From the first of (2.2), it is worth to mention that the
model taken into account is governed by a second order slip, that is,
B – 0. It is also noticed that two types of general heating processes,
namely, the prescribed surface temperature (PST) and the pre-
scribed wall heat flux (PHF) are considered.

3. Exact analytical solutions

3.1. Solution of the flow field

Similar to [20], we introduce the subsequent similarity
transformations

g ¼ y

ffiffiffi
c
m

r
; u ¼ cxf 0ðgÞ; v ¼ �

ffiffiffiffiffi
cm
p

f ðgÞ; h ¼ T � T1
Tw � T1

; ð3:3Þ

which gives vw ¼ �
ffiffiffiffiffi
cm
p

f ð0Þ, and the governing equations of motion
(2.1) and (2.2) is reduced to the similarity form

f 000 þ ff 00 � f 02 �Mf 0 ¼ 0;
h00 þ Prðf h0 � 2f 0hÞ ¼ 0;

ð3:4Þ

together with the boundary conditions

f ð0Þ ¼ s; f 0ð0Þ ¼ dþ cf 00ð0Þ þ df 000ð0Þ; f 0ð1Þ ¼ 0;
hð0Þ ¼ 1ðPST caseÞ; h0ð0Þ ¼ �1 ðPHF caseÞ; hð1Þ ¼ 0:

ð3:5Þ

Here c ¼ A
ffiffi
c
m

p
is the first order velocity slip parameter and d ¼ B c

m is
the second order velocity slip parameter. It should be noticed that
when M = 0 and d = 1, Eqs. (3.4) and (3.5) reduce to those recently

Nomenclature

(A,B) dimensional first and second order velocity slips
(b1,b2) constants
B0 uniform magnetic field strength
c a positive constant
cp specific heat at constant pressure
d stretching/shrinking parameter
f dimensionless self-similar velocity
k thermal conductivity
L incomplete Laguerre polynomial
M magnetic interaction strength parameter
Nu Nusselt number
p a variable
Pr Prandtl number
Pr⁄ a scaled Prandtl number
s dimensionless suction or injection parameter
S a variable
t a variable
T temperature

Tw wall temperature
T1 uniform temperature
u velocity component in x-direction
v velocity component in y-direction
vw dimensional suction or injection parameter
(x,y) longitudinal and transverse directions

Greek symbols
g a boundary layer coordinate
h a scaled temperature
(c,d) first and second order velocity slip parameters
q density of the fluid
m kinematic viscosity of the fluid
k exponential constant
ki dummy variables
K a variable
r electrical conductivity of the fluid

Table 1
Comparison of the values of k for d = �1, M = 0 and d = �1 for several s and c with those of [21] in parenthesis. Upper and lower branch solutions are
presented.

s c = 0 c = 1 c = 3 c = 10

Upper
2 1.8832035(1.8832) 1.9212896(1.9213) 1.9519690(1.9520) 1.9795599(1.9796)
3 2.9655726(2.9656) 2.9737635(2.9738) 2.9822017(2.9822) 2.9916152(2.9916)
5 4.9922728(4.9923) 4.9935252(4.9935) 4.9951096(4.9951) 4.9973652(4.9974)
10 9.9990096(9.9990) 9.9990989(9.9991) 9.9992365(9.9992) 9.9995024(9.9995)

Lower
2 0.53101006(0.5310) 0.40052899(0.4005) 0.29676823(0.2968) 0.18882968(0.1888)
3 0.33720300(0.3372) 0.27228263(0.2723) 0.21301670(0.2130) 0.14289554(0.1429)
5 0.20030956(0.2003) 0.17232557(0.1723) 0.14226228(0.1423) 0.10102758(0.1010)
10 0.10000990(0.1000) 0.09173797(0.0917) 0.08073383(0.0807) 0.06197570(0.0620)

Table 2
Comparison of the values of �h0(0) and h(0) for d = 1 and M = 0 for various parameters
with those of [22] in parenthesis.

Pr c d s �h0(0) h(0)

1 1 �1 2 2.09847360(2.098476) 0.47653685(0.476536)
1 1 �2 2 2.06423598(2.064238) 0.48444074(0.484440)
1 1 �3 2 2.04775583(2.035026) 0.48833947(0.488339)
1 3 �1 2 2.06471031(2.064712) 0.48432945(0.484329)
2 1 �1 2 4.13198978(4.131991) 0.24201415(0.242014)
3 1 �1 2 6.14919431(6.149186) 0.16262293(0.162623)
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