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Well-defined steady-state response does not imply CICS
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Abstract

Systems for which each constant input gives rise to a unique globally attracting equilibrium are considered. A counterexample is provided
to show that inputs which are only asymptotically constant may not result in states converging to equilibria (failure of the converging-input
converging state, or “CICS” property).
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a controlled finite dimensional system

ẋ(t) = f (x(t), u(t)), (1)

under suitable regularity assumptions, and assume that the fol-
lowing property holds: for each constant input u ≡ a, there is
a unique steady-state xa (that is, f (x, a) = 0 has the unique
solution x = xa), and every solution of the system ẋ = f (x, a)

converges to this state xa . In the terminology of [1–3], we say
that the system has a “characteristic” or a monostable steady-
state step response.

Given that (1) admits a characteristic, it is natural to ask if the
following converging-input converging-state (CICS) property
must then also hold: for every convergent input u(·) (that is to
say, u(t) → a as t → ∞, for some value a), every bounded
solution of ẋ = f (x, u) converges to xa .

Such a property is especially interesting when studying cas-
cades of systems, in which the input u to the system being
studied is itself the output of another system. That is, there is
another system ż=g(z, v), u=h(z), and v is an external input
to the cascade. In that context, one would like to know whether
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each of the f and g systems having a characteristic implies that
the cascade also does. Suppose that v ≡ a. If the g system
has a monostable response, its state converges to some value:
z(t) → za , so that also, assuming continuity of the read-out
map h, u(t) → b := h(za). If the CICS property holds for the
f subsystem (and assuming that its trajectories are bounded),
then x(t) → xb, and therefore the complete state (z(t), x(t))

converges to (za, xb), establishing that the cascade also admits
a characteristic.

These questions have a long history in control as well as in
dynamical systems theory, see for example the early work of
Markus [6], and are closely related to the topic of “asymptot-
ically autonomous” systems, see for example [4] Appendix A
(by Z. Artstein). The latter are time-varying systems ẋ=F(x, t)

for which F(x, t) → F0(x) as t → ∞, for some time-invariant
vector field F0, where the convergence is assumed to hold in an
appropriate technical sense. Clearly, one may view f (x, u(t)),
for any fixed given input u(·), as a time-varying vector field
F(x, t), and, if u(t) → a as t → ∞, one may define F0(x) :=
f (x, a); in this manner, “u(t) → a” translates into “F(x, t) →
F0(x),” and the questions addressed here amount to relating
the behaviour of solutions of ẋ = F(x, t) to that of solutions
of the limit system ẋ = F0(x). For other related work, see for
example [7–9,11,12,5].

There are several known sufficient conditions that guarantee
the CICS property for systems which admit characteristics. One
such condition is stability of the equilibria xa . That is, not only
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do trajectories of ẋ = f (x, a) approach xa as t → ∞, but the
“small excursion” Lyapunov stability condition holds as well:
for each neighbourhood U of xa , there is another neighbour-
hood V such that solutions starting in V do not exit U (later
in this paper we discuss a weaker condition, which is implied
by but does not imply the stability condition). The conjunction
of stability and global attractivity of xa is, of course, equiva-
lent to global asymptotic stability of xa under which condition
the CICS property is a particular consequence of Theorem 2
in [6]. A different condition ensuring the CICS property is that
of monotonicity: the conclusions hold provided that the system
is monotone as an input/output system in the sense of [2]; the
paper [2] made stability into part of the definition of character-
istic, but [3] showed one need not assume stability in order to
conclude the CICS property.

In view of these different sufficient conditions, it is natural to
ask if it is always true that the CICS property holds for systems
with characteristics. The main goal of this note is to provide a
negative answer to that question by means of a counterexam-
ple. The counterexample is two-dimensional (one-dimensional
systems are always monotone, so no one-dimensional coun-
terexamples could exist) and quite explicit. The construction is
provided in the next section. For completeness, in the last sec-
tion we review a simple criterion which guarantees the CICS
property for systems with characteristics.

2. The counterexample

It is well known that large-time behaviour of solutions of an
asymptotically autonomous system can differ markedly from
that of solutions of its autonomous limit system: examples can
be found in [11,12]. In the context of the present note, the prop-
erty that, for every constant input, there should exist a unique
attracting state is a distinguishing feature that adds subtlety to
the planar counterexample, the construction of which can be
summarised as follows.

First, we determine a locally Lipschitz function f : R2 ×
R → R2 such that, for every constant a ∈ R, (0, 1) is a globally
attractive equilibrium of the autonomous system ẋ = f (x, a).
For each r0 > 1, we then proceed to construct an input u, with
u(t) → 0 as t → ∞, such that, for all initial data x0 ∈ R2

with Euclidean norm |x0| = r0, the solution of the initial-value
problem ẋ = f (x, u), x(0) = x0, is bounded and has the unit
circle S1 as its �-limit set.

In order to define our system, we start by introducing an
auxiliary function. Let h : R → [0, ∞) be any smooth function
such that h(y) = 1 for all y ∈ [1 , 2] and h(y) = 0 for all
y /∈ [ 1

2 , 4], and let g : [0, ∞) × R → [0, ∞) be given by

g(r, u) :=
{

uph((r − 1)/u), u > 0,

0, u�0,
(2)

with constant p > 2. We remark that g is a locally Lips-
chitz function. To see this, note that g is smooth on each of
[0, ∞) × (0, ∞) and [0, ∞) × (−∞, 0), and is continuous
on all of [0, ∞) × R. Let k be an upper bound on h and |h′|

(such a bound exists since h(y) = 0 = h′(y) for all y /∈ [ 1
2 , 4]).

Then, for all (r, u) with 0 < |u|�1, we have |�g/�r(r, u)|�k,

|�g/�u(r, u)|�(p + 4)k, and |∇g(r, u)|�k

√
1 + (p + 4)2,

which implies that g is uniformly Lipschitz around u = 0.
Consider the system on R2 (with Euclidean norm | · |)

ẋ = f (x, u),

with f = (f1, f2) : R2 × R → R2 given by

f1(x, u) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x1(|x| − 1)p+1/|x|
−2x2(1 − (x1/|x|))
−x2g(|x|, u), |x|�1,

2(x1 − 1)x2, |x| < 1,

f2(x, u) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x2(|x| − 1)p+1/|x|
+2x1(1 − (x1/|x|))
+x1g(|x|, u), |x|�1,

−(x1 − 1)2 + x2
2 , |x| < 1

(where x = (x1, x2)). We claim that f is locally Lipschitz.
Since g is locally Lipschitz, to prove the claim it suffices to
show that the u-independent vector field F given by F(x) :=
f (x, u)−(−x2, x1)g(|x|, u) is locally Lipschitz. Let S1 denote
the unit circle centred at 0 in R2. Observe that F is continuous
at all points (x, u) ∈ S1 × R and continuously differentiable
on (R2\S1) × R with bounded derivative on (K1\S1) × K2
for every compact neighbourhood K1 of S1 and every compact
K2 ⊂ R. It follows that F is locally Lipschitz.

With zero input u = 0 (a = 0 in the notation in the Intro-
duction), the system has a globally attractive (but not stable)
equilibrium at xa = (1, 0), as will follow from a more general
result shown below for arbitrary constant inputs. In particular,
S1\{(1, 0)} is a homoclinic connection of (1, 0) to itself. More
generally, the collection of punctured circles

{x| |x − (b, 0)| = 1 − b}\{(1, 0)}, 0�b < 1,

constitutes a family of such homoclinic connections filling the
unit disc. For all inputs u, this family of homoclinic connections
persists (as the vector field on the closed unit disc coincides
with the zero input case).

Exterior to the open unit disc, the system representation, in
polar coordinates, is given by

ṙ = −(r − 1)p+1, �̇ = 4 sin2(�/2) + g(r, u). (3)

Therefore, in view of (2), for every constant input u=a 	= 0 the
vector field differs from the zero-input case only when a > 0 and
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