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ABSTRACT

A two-dimensional cell-centred finite volume model for quadrilateral grids is presented. The solution
methodology of the depth-averaged shallow water equations is based upon a Godunov-type upwind
finite volume formulation, whereby the inviscid fluxes of the system of equations are obtained using
the HLL Riemann solver. A simple yet precise analytical expression is presented to compute hydrostatic
flux through an interface of a quadrilateral cell in order to achieve exact balance between flux gradient
and bed slope source terms under still water condition. A multidimensional gradient reconstruction pro-
cedure and a continuously differentiable multidimensional slope limiter based on a wide computational
stencil are proposed to maintain second-order spatial accuracy. The proposed second-order scheme is
shown to be more accurate even when distorted grids are used and is therefore more suitable for practical
applications. The presented model is verified and validated by solving a wide variety of test cases having
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analytical solutions and laboratory measurements.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The two-dimensional (2D) shallow water equations are numer-
ically solved to simulate many hydraulic and environmental
engineering flow problems. A great amount of literature exists
describing various computational techniques such as the finite dif-
ference method [1,2], the finite element method [3,4] and the finite
volume method [5-7], which have been developed to obtain satis-
factory solutions of the system of equations. The use of the finite
volume technique has become more popular in recent times for
simulating free surface flows because of its simplicity of imple-
mentation and good flexibility for space discretization. In addition,
the finite volume method is based on the integral form of the con-
servation equations, and thus a scheme in conservation form can
easily be constructed to capture shock waves (shock-capturing
property).

Godunov-type finite volume solvers of the shallow water equa-
tions have a shock-capturing property that is essential to preserve
discontinuous or steeply varying gradients that occur in transcrit-
ical and sharp-fronted shallow flows. Typical examples of Godu-
nov-type flow models can be found in literature [e.g. 5-11]. By
upwinding the flux within the integral conservation form of the
governing equations, Godunov-type methods represent physically
correct propagation of information throughout the flow field by
solving sets of Riemann problems over the entire flow domain.
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Many Riemann solvers now exist, out of which the HLL solver is
preferred here because it better describes the flux for dry bed sit-
uation and does not require any entropy fix [8,12]. Although, the
HLL Riemann solver is robust, difficulties arise in solving the
Riemann problem when source terms are included in the govern-
ing equations. Essentially, a numerical imbalance is created by arti-
ficially splitting the surface gradient into flux gradient and bed
slope terms. Improper discretization of these terms does not result
in a well-balanced scheme. Bermiidez and Vazquez-Cendé6n [13]
proposed upwinding of the source terms to achieve equilibrium
between flux gradients and source terms, and this method signifi-
cantly improved the accuracy of the numerical solution, compared
with earlier methods. Later, Vazquez-Cendon [14] modified the
same idea to solve more general flow problems in the case of a
one-dimensional channel with longitudinal width variations. LeVe-
que [15] proposed a well-balanced scheme by introducing a Rie-
mann problem inside a cell to account for the propagation of
source terms, but this has been reported to be less robust when
predicting steady transcritical flows that contain shocks. Burguete
and Garcia-Navarro [16] proposed conservative schemes with flux
adjusted source term discretization technique using either a
semi-implicit or upwinding method. Zhou et al. [10] developed
the Surface Gradient Method (SGM) and pointed out that the main
source of error is caused by inaccurate reconstruction of water
depth. Valiani and Begnudelli [17] presented a novel method to
compute the bed slope source terms from the pressure terms eval-
uated for all the faces of an n-sided cell. Another simple balancing
approach was presented by Kuiry et al. [11,18] for triangular and
Cartesian grids by introducing an improved treatment of pressure
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term. However, most of the literature on well-balanced schemes
are limited to Cartesian and triangular grids. The development of
well-balanced scheme for unstructured quadrilateral grids is rela-
tively difficult and hence the simple analytical method of Kuiry
et al. [11,18] has been modified and presented herein.

The performance of Riemann based approaches greatly depends
on temporal and spatial accuracy. The use of piecewise constant
data for the first-order accurate schemes often does not fulfil the
desired accuracy. Therefore, higher-order schemes are developed
by reconstructing the conservative variables within a cell. The
reconstruction procedure involves computations of gradients of
the variables based on the cell-centred values in a defined stencil.
While generating grids using a mesh generator distorted grids in
some regions may be automatically generated. Nevertheless, a grid
can be further distorted due to the presence of steep gradients in
the bottom topography. The MUSCL based one-dimensional recon-
struction approach [19] has been quite effective for structured grids
but may produce poor results on distorted grids [20-22]. An
alternative approach could be the use of multidimensional recon-
struction method based on the cell-centred and cell-vertex formu-
lations on unstructured grids. Such a reconstruction method
possesses dependence on a wide computational stencil and does
not strongly depend on vertex values to preserve stability even
for distorted grids. However, the higher-order schemes often pro-
duce nonphysical oscillations. These oscillations can be suppressed
by limiting the slopes of the reconstructed variables using a nonlin-
ear function called a limiter. For unstructured grids, the limiter
should be inherently multidimensional and a one-dimensional ap-
proach may not be suitable. Jawahar and Kamath [21] and Yoon and
Kang [22] proposed multi-dimensional reconstruction procedure
and multidimensional limiter for triangular grids but similar devel-
opments for quadrilateral grids are not found in literature. In the
present study, a gradient reconstruction method and a multidimen-
sional limiter suitable for regular and distorted quadrilateral grids
are presented. The proposed second-order method is shown to be
producing better results when distorted grids are used.

The study presents a cell-centred finite volume model on quad-
rilateral grids. In order to achieve exact balance between flux gra-
dients and source terms, a simple algebraic method is proposed.
For higher-order accuracy, a multidimensional reconstruction
technique and a continuously differentiable multidimensional lim-
iter are introduced for unstructured quadrilateral grids. The model
is applied to a number of analytical and experimental test prob-
lems and the computed results are investigated for comparative
study.

2. Governing equations

The two-dimensional, shallow water mathematical model is ob-
tained by integrating the Navier-Stokes equations over the flow
depth. The assumptions made in the process are: incompressible
fluid, uniform velocity distribution in the vertical direction, hydro-
static pressure distribution and small bottom slope.

Neglecting diffusion of momentum due to viscosity and turbu-
lence, wind effects and the Coriolis term, the continuity and momen-
tum equations in conservation form can be expressed as [23]:
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where U represents the vector of conserved variables, F and G are
the fluxes associated with the conserved variables in the x- and
y-directions. In addition, g, =uh and q, = vh are the unitary water
discharges, u and v are depth-averaged velocities in the x- and y-
directions, respectively, while Sox = —9z,/0x and S,, = —9z,/dy are
the bed slopes along these directions. The variable H=h +z, is the
water level, h represents depth of flow, z, defines bottom elevation,
g is the acceleration due to gravity. Here, water level (H) is consid-
ered as one of the unknown variables instead of water depth (h) due
to the fact that reconstruction of h for higher-order spatial accuracy
directly from the cell average values will not guarantee a continu-
ous reconstruction at the cell boundaries if the bed slope varies
from cell to cell [10,24]. The friction slopes are estimated using
the Manning relation [1,5,25] as given below.
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where n is the Manning’'s roughness coefficient. In general, the
influence of bottom roughness prevails over the turbulent shear
stress between cells. Therefore the effective stress terms are
neglected in the computations.

3. Numerical solution

The computational domain is divided into a finite number of
unstructured quadrilateral cells which form the control volumes.
Eq. (1) is then integrated over an elementary control volume and
discretized by finite volume method. The dependent variables of
the system are assumed to be stored at the centre of the cell and
represented as piecewise constants. It is useful to rewrite Eq. (1) as

ou
ar +V-EU) =S(x,y,U) (3)

where E = (F, G)', the flux tensor, is introduced in order to express
the integral form of the equations over a fixed volume V,
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For the computational domain defined by a set of quadrilateral
cells, a discrete approximation to Eq. (4) is applied over each cell V
so that the volume integrals represent integrals over the cell with
the dependent variables represented as piecewise constants. The
Gauss divergence theorem is applied to the second integral of Eq.
(4) and the contour integral is approached via a mid-point rule,
that is, a numerical flux is defined at the mid-point of each edge
giving
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where e is the cell edge index and E* is the numerical flux vector, ¢
is the boundary of the plan area A of the control volume V, n, and n,
are the components of unit normal in the x- and y-directions,
respectively. The explicit expression of E* depends upon the se-
lected Riemann solver [5,7,12,26-31]. In the present work, the HLL
Riemann solver of Harten, Lax, and van Leer [12,28] is used to com-
pute the flux. It is preferred to Roe’s Riemann solver because it bet-
ter describes the flux for dry bed situation and does not require any
entropy fix [8,12].

The HLL scheme assumes one constant state between left and
right waves and defines the flux at an interface as
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