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a b s t r a c t

In this paper we introduce a new technique for the numerical solution of the various partial differential
equations governing flow and transport phenomena in porous media. This method is proposed to be used
in high level programming languages like MATLAB, Python, etc., which show to be more efficient for cer-
tain mathematical operations than for others. The proposed technique utilizes those operations in which
these programming languages are efficient the most and keeps away as much as possible from those inef-
ficient, time-consuming operations. In particular, this technique is based on the minimization of using
multiple indices looping operations by reshaping the unknown variables into one-dimensional column
vectors and performing the numerical operations using shifting matrices. The cell-centered information
as well as the face-centered information are shifted to the adjacent face-center and cell-center, respec-
tively. This enables the difference equations to be done for all the cells at once using matrix operations
rather than within loops. Furthermore, for results post-processing, the face-center information can fur-
ther be mapped to the physical grid nodes for contour plotting and stream lines constructions. In this
work we apply this technique to flow and transport phenomena in porous media.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Transport phenomena in porous media is described in the
framework of the continuum hypothesis in which field variables
are continuous functions of space and time defined at each point
of the porous medium domain. This point of view enabled the
description of basic conservation laws in the form of differential
equations for which field variables are differentiable to at least
as much as the governing differential equations require (Salama
and Van-Geel [1,2]). Solutions to these equations are in most cases
obtained numerically for which several methods have been applied
([3–10] to list but a few). The issue of efficiently solving partial dif-
ferential equations numerically is not only related to the methods
of solution but also to the possibility of designing efficient and ro-
bust algorithms. An efficient algorithm may be defined as the one
which achieves the solution in the least required time. Many fac-
tors may be invoked which controls the time required to complete
the solution. These may be divided into hardware requirements

and programming methodologies. In cases when there may be no
control on the available computing facilities, it remains important
to design the solution algorithm in the most efficient and elegant
way. Examples include the use of efficient solvers, the best
utilization of language features that enable doing mathematical
operations efficiently, etc. In this regard, we emphasize that some
higher level programming languages are efficient in utilizing spe-
cial kind of mathematical and logical operations, however, they
show to be inefficient in other operations. It is therefore important,
if one uses these programming languages, to put forward their cod-
ing into the form that utilizes those techniques which are the most
efficient and to keep away as much as possible from those ineffi-
cient procedures. As an example, it is known that MATLAB, Python
and the like are most powerful in using matrices. However, they
are inefficient in loops because of the required interpreting proce-
dures they require each time a loop is called. Therefore, it is impor-
tant that one formulates his problem such that matrix operations
dominate the looping processes. In this work we introduce the
use of shifting matrices to transfer information between cell-cen-
ters and face-center and vice versa. Doing so eliminates the use
of loops within the body of the code and therefore significantly re-
duces the CPU time. We apply this technique to the problem of
transport in porous media. We use finite difference technique in
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our implementation because of its apparent simplicity; however,
this technique may equally be used in finite volume and finite ele-
ment settings.

2. Governing equations

In order to highlight the features of our scheme, we consider a
simple 2D problem in a rectangular porous medium domain, X:
(a1,b1) � (a2,b2), saturated with a fluid that moves as a result of
pressure gradient. The equation of motion describing this system
is given by:

u ¼ �K$p in X ð1Þ

$ � u ¼ q in X ð2Þ

p ¼ pB on CD ð3Þ

u � n ¼ uB on CN ð4Þ

Furthermore, the transport of solute in this system is described
by the following second order partial differential equation:

@uc
@t
þr � uc ¼ r � Drc þ qc in X ð5Þ

c ¼ cB on CD ð6Þ
j � n ¼ jB on CN ð7Þ

where q is a source/sink term, p is the pressure, u is the velocity vec-
tor, K is the permeability tensor, u is the porosity, j is the diffusive
flux vector, and c is solute concentration, D is the dispersion tensor,
qc is a source/sink term of solute, pB, uB, cB, and jB are pressure,
velocity, concentration, and solute flux at the boundary. To solving
this problem over a 2D rectangular domain, we define the rectangu-
lar mesh {x0,x1,x2, . . .xi, . . . ,xm} � {y0,y1,y2, . . . ,yj, . . . ,yn} over which
we approximate the solution. We use the cell-center finite differ-
ence scheme (CCFD) to approximate the governing equations be-
cause it satisfies mass conservation law locally as will be
explained in the next section.

3. Traditional programming algorithms

For this system, we assume that neither the dependent vari-
ables nor the properties of the porous medium or the flowing fluid
are dependent on solute concentrations and therefore the above
system of equations is not two-way coupled. Substituting Eq. (1)
into Eq. (2), one obtains an equation in the pressure only which
may be solved numerically to obtain the pressure field. The veloc-
ity field is obtained by back substituting the pressure field into
Darcy’s law. Solute transport equation is then solved using velocity
information obtained previously on solving flow equations. Tradi-
tionally, the pressure field at cells center as well as the velocity
field at the edge centers surrounding each cell are usually saved
in arrays characterized by number of indices that are as many as
the dimensions of the space. For example, in our 2D problem the
unknown pressure field, p(i, j) and the solute concentration c(i, j)
are saved in m � n matrices where m is the number of segments
in the x-direction and n is the number of segments in the y-direc-
tion. Likewise the velocity field, ux(i, j) and uy(i, j) are saved in ar-
rays of dimensions (m + 1) � n and m � (n + 1) respectively. The
difference scheme is usually done on a generic cell as shown in
Fig. 1 and the discretization of the various terms is described in
the next subsections.

3.1. Discretizing Darcy’s law

Using the cell-center finite difference scheme, the various
velocity components at the mid-edges of a generic cell are ob-
tained as follows:
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3.2. Discretizing mass conservation equation

Eq. (2) is discretized, likewise, in the following form
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Now substituting Eqs. (8)–(11) into Eq. (12) one obtains an
equation in the pressure only as explained earlier which may be
solved to obtain the pressure field from which the velocity field
may be determined.

3.3. Discretizing solute transport equation

Eq. (5) describes the transport of a passive solute moving with
the fluid in the porous medium domain. Three terms are involved
into this equation, namely an accumulation term, an advection
term and a dispersive term. We highlight the fact that the treat-
ment of the diffusion–dispersion term is similar to the pressure
equation described earlier and will not, therefore, be repeated.
Needless to mention that the velocity field at the mid-edge ele-
ments are known by solving the flow equations. The advection
term is discretized based on the upwind scheme, such that:
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Fig. 1. Discretization on a generic cell.
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