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a b s t r a c t

Overset strategy can be an efficient way to keep high-accuracy discretization by decomposing a complex
geometry in topologically simple subdomains. Apart from the grid assembly algorithm, the key point of
overset technique lies in the interpolation processes which ensure the communications between the
overlapping grids. The family of explicit Lagrange and optimized interpolation schemes is studied. The
a priori interpolation error is analyzed in the Fourier space, and combined with the error of the chosen
discretization to highlight the modification of the numerical error. When high-accuracy algorithms are
used an optimization of the interpolation coefficients can enhance the resolvality, which can be useful
when high-frequency waves or small turbulent scales need to be supported by a grid. For general curvi-
linear grids in more than one space dimension, a mapping in a computational space followed by a tens-
orization of 1-D interpolations is preferred to a direct evaluation of the coefficient in the physical domain.
A high-order extension of the isoparametric mapping is accurate and robust since it avoids the inversion
of a matrix which may be ill-conditioned. A posteriori error analyses indicate that the interpolation sten-
cil size must be tailored to the accuracy of the discretization scheme. For well discretized wavelengthes,
the results show that the choice of a stencil smaller than the stencil of the corresponding finite-difference
scheme can be acceptable. Besides the gain of optimization to capture high-frequency phenomena is also
underlined. Adding order constraints to the optimization allows an interesting trade-off when a large
range of scales is considered. Finally, the ability of the present overset strategy to preserve accuracy is
illustrated by the diffraction of an acoustic source by two cylinders, and the generation of acoustic tones
in a rotor–stator interaction. Some recommandations are formulated in the closing section.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Direct Noise Computation (DNC), consisting in solving the
acoustic and aerodynamic fields in the same run, increasingly be-
comes a viable tool for analysis of engineering problems in which
noise plays a significant role. In fact, DNC has already been used to
study fundamental aspects of noise generation and propagation,
such as jets [1,2], or cavities [3,4]. Numerical algorithms minimiz-
ing dispersion and dissipation errors are generally required to re-
solve the weak acoustic wave and preserve their characteristics
during long-range propagation [5]. This can be achieved by the
use of high-accuracy central difference schemes [6]. Note that a
similar constraint is also familiar in the DNS/LES framework, where
fine-scale turbulent structures have to be computed on a given
grid. Quasi-spectral finite-difference approximations are also
widely used for that purpose due to their simplicity and efficiency.

The extension to complex geometries of practical interest is how-
ever not evident. A first step has been provided by the use of cur-
vilinear grids [7,8] which employs body-fitted grids. This
guarantees an accurate treatment of wall boundary conditions,
but it is not an easy task to control the grid density: either the grid
spacing deteriorates as the distance from the body increases, or the
grid is too clustered in some regions, leading to a waste of compu-
tational time. Furthermore, the design of multiblock structured
meshes with a sufficient regularity is often a challenging task. A
solution to control the homogeneity and isotropy of the grid is
the use of overset methods. This method consists in solving partial
differential equations on different grids which overlap partially.
The great interest is thus to decompose a complex domain into
several simpler sub-domains, where the high-accuracy schemes
can still be used independently. The simple sub-domains are over-
lapped and interpolations are used to ensure communications.

This method has been first introduced by Benek et al. [9] in the
beginning of the 1980s to simulate the flow around a space shuttle.
Inspired from the work of Kreiss [10], Chessire and Henshaw [11]
studied the generic features of a composite grid builder. Numerous
particular cases must be treated such as the overlap of two grids
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near a solid boundary, as explained for instance by Petersson [12].
A free library called Overture developed by Henshaw et al. [13] is
now available. The next step has been to combine the overlapping
grid capability with adaptive mesh refinement techniques, as dem-
onstrated recently by Henshaw and Schwendeman [14], Saunier
et al. [15], Sitaraman et al. [16], or Péron et al. [17]. The review
by Prewitt et al. [18] shows the maturity of the method for aerody-
namic applications with moving grids.

In the context of Computational AeroAcoustics (CAA), high-
accuracy algorithms are generally retained, which require rela-
tively regular grids, and large stencils to evaluate derivatives. Yin
and Delfs [19] has proposed a first extension of the overset tech-
nique with Dispersion Relation Preserving (DRP) schemes [20].
Sherer and Scott [21] have developed the method for compact
schemes, and Desquesnes et al. [22] have applied it to a CFD/CAA
coupling. Emmert et al. [23,24] used the Overture libraries to per-
form overset simulations with eleven-point stencil finite-differ-
ence DRP schemes. When high-order numerical schemes are
retained, the interpolation scheme necessary to ensure the com-
munication between the grids should not reduce the global accu-
racy of the algorithm.

The aim of the present paper is precisely to investigate the
interpolation errors in order to choose an interpolation method tai-
lored to the discretization algorithms. The main properties of an
interpolation scheme are summarized in a first part. The family
of explicit Lagrange or optimized interpolation is detailed in the
second section where the extension to multidimensional state
space is discussed. A static error analysis based on Fourier repre-
sentation is proposed in the third section. Sensibly different con-
clusions can be inferred by the dynamic error analysis of the
fourth section. The last section is dedicated to more challenging
benchmark cases, such as the diffraction of a source by two cylin-
ders, or the interaction of a gust and a cascade of vanes, represen-
tative of the rotor–stator interaction noise. Some
recommendations are drawn in the concluding section.

2. Role of interpolations for overset grids

2.1. Principle of the method

The example of Fig. 1 provides an illustration of the principle for
two overlapping grids in one space dimension. Two identical regu-
lar grids shifted by half a grid spacing are used, but the generaliza-
tion to any multidimensional grids is straightforward. Grid 1 (on
top) ended at index n, and grid 2 (bottom) starts at index 1. An
information propagating from left to right is thus known on grid
1, but not on grid 2. Values must be transmitted from grid 1 to grid
2 to sustain the propagation. This communication involves
interpolations from interior points (white points) of grid 1 toward

interpolated points (black points) of grid 2. In overset terminology,
white points are the donor points, whereas black points are recei-
ver points, sometimes referred to as ghost points. The number of
ghost points is fixed by the width of the discretization stencil.
For instance, an eleven-point centered finite difference scheme is
chosen in the example of Fig. 1, so that five ghost are added at
the right of grid 1. Likewise five ghost are added at the left of grid
2 to allow a two-way communication. The region between the first
interpolation point of grid 2 and the last interpolation point of grid
1 is the overlapping zone. Apart from the direct cost due to inter-
polation operations, the size of the overlap will add an extra cost. It
is thus interesting to keep this zone to a minimum.

For explicit interpolation, the distinction between donor and re-
ceiver points imposes a minimal distance between the points, di-
rectly linked to the stencil of the interpolation scheme. When a
donor point can also be a receiver point, the interpolation is said
implicit. That means that at least one of the values used to perform
the interpolation is an unknown variable to be interpolated on the
other grid. The two-sided interpolation processes are coupled and
require the solution of a linear system of equations, which can be
expensive [11]. Nevertheless, an implicit interpolation allows a re-
duced overlapping zone, and becomes pertinent for complex
geometries, where the gap between two bodies is small for in-
stance. In the following of the study, only explicit interpolations
are discussed. This choice is also motivated by the easier imple-
mentation on parallel computers, inevitable when three-dimen-
sional applications on large grids are tackled.

2.2. Properties of an interpolation scheme

Stability issues can arise when considering non-centered sten-
cils [25], or extrapolation [26]. It is then possible to combine an
optimization in the wavenumber space and a constraint on the
amplification to stabilize the interpolation scheme [26,25]. In the
following, only centered interpolations with an even number of
stencil points are considered, so that no stability issue arises.

Another issue is the conservative character of the interpolation,
which is crucial for transonic or supersonic flows. Conservative
interpolation schemes [27–29] are cumbersome for high-order
multidimensional applications, so that practitioners prefer the
use of non-conservative interpolations, which can be sufficient
for weak shocks [30,24], or in conjunction with an adaptive refine-
ment technique to locally increase grid resolution near shocks
[31,14]. In the present paper, only subsonic compressible problems
are considered.

The main issue in the computational aeroacoustics and large-
eddy simulation frameworks is the high-accuracy of the interpola-
tion scheme. Chessire and Henshaw [11] have obtained theoretical
results for elliptic problems on composite meshes, and show that

Fig. 1. 1-D example of two overlapping grids. Each grid is both receiver and donor of information. The black points are the interpolation points, called ghost points. The white
points are interior points on which derivatives are computed on a centered eleven-point stencil. Thus, five ghost points in the overlapping area are needed. The four arrows
symbolize an explicit interpolation from a 4-point stencil.
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