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a b s t r a c t

We present a new HLL-type approximate Riemann solver that aims at capturing any isolated discontinu-
ity without necessitating extensive characteristic analysis of governing partial differential equations. This
property is especially attractive for complex hyperbolic systems with more than two equations. Follow-
ing Linde’s approach [6], we introduce a generic middle wave into the classical two-state HLL solver. The
property of this third wave is typified by the way of a ‘‘strength indicator’’ that is derived from polyno-
mial considerations. The polynomial that constitutes the basis of the procedure is made non-oscillatory
by an adapted fourth-order WENO algorithm (CWENO4). This algorithm makes it possible to derive an
expression for the strength indicator. According to the size of this latter parameter, the resulting solver
(HLL-RH), either computes the multi-dimensional Rankine-Hugoniot equations if an isolated discontinu-
ity appears in the Riemann fan, or asymptotically tends towards the two-state HLL solver if the solution is
locally smooth. The asymptotic version of the HLL-RH solver is demonstrated to be positively conserva-
tive and entropy satisfying in its first-order multi-dimensional form provided that a relevant and not too
restrictive CFL condition is considered; specific limitations of the conservative increments of the numer-
ical solution and a suited entropy condition enable to maintain these properties in its high-order version.

With a monotonicity-preserving algorithm for the time integration, the numerical method so gener-
ated, is third order in time and fourth-order accurate in space for the smooth part of the solution; more-
over, the scheme is stable and accurate when capturing a shock wave, whatever the complexity of the
underlying differential system.

Extensive numerical tests for the one- and two-dimensional Euler equation of gas dynamics and com-
parisons with classical Godunov-type methods help to point out the potentialities and insufficiencies of
the method.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Computing numerical solutions of hyperbolic systems of con-
servation laws is a challenging work. Because non-linear hyper-
bolic partial differential equations may give rise both to
discontinuous solutions as shock waves or contact surfaces and so-
nic expansion waves, any advanced numerical method must be
able to capture these features without introducing spurious oscil-
lations or losing the physical meaning of the solution.

Over the past three decades, Godunov’s method [3] and its
numerous derivatives [29], have been employed successfully as
numerical solvers for non-linear hyperbolic problems. The great
popularity of these schemes is primarily due to their robustness,
the possibility of achieving high resolution of stationary disconti-
nuities and the availability of an underlying physical model.

Central to these methods is the solution of the Riemann prob-
lem that naturally arises in the conservative discretization of
advection problems. However, exact solution of the Riemann prob-

lem requires the use of an iterative procedure that leads to rela-
tively complex and time-consuming numerical schemes. To
overcome this drawback, several approximations to the Riemann
problem have been devised [4,29]. Thus, many of those resulting
upwind schemes are able to produce nice results on specific prob-
lems; however, certain approximations can also fail dramatically
or produce numerical side effects [5,33].

Among these methods, the approximate solver–initially sug-
gested by Harten, Lax and Van-Leer (HLL) in 1983 [2], forms the ba-
sis of very efficient and robust approximate Godunov-type
methods. With this approach, the main idea is to assume for the
solution, a wave configuration that consists of two extreme waves
separating three constant states, whatever the complexity of the
physics. With an appropriate choice of wave velocities [4], the sim-
plest HLL approximation resolves isolated shock waves [4,10], is
positively conservative [5] and satisfies an entropy inequality [2].

Unfortunately, the assumption that is the basis of the HLL
approach (two-wave model) is correct only for hyperbolic systems
of two equations such as, for example, the one-dimensional shallow
water equations. In gas dynamics or magneto-hydrodynamics,
this two-wave assumption becomes incorrect. Consequently, the
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resolution of all physical intermediate waves between the two ex-
treme waves becomes inaccurate; for the limiting case for which
these intermediate waves are stationary relative to the mesh, the
resulting numerical smearing becomes even excessive [29]. A break-
through in this domain came from Toro, Spruce and Speares [11],
who proposed the so-called ‘‘HLLC Riemann solver’’ (‘‘C’’ standing
for ‘‘contact’’) as applied to the one-dimensional time-dependent
Euler equation of gas dynamics. This method assumes a three-wave
model, resulting in better resolution of the intermediate wave (the
contact discontinuity for the one-dimensional Euler equations). La-
ter on, Batten et al. [10], made a thorough analysis of the HLLC
scheme and suggested new ways of estimating the characteristic
wave speeds; they also showed that the resulting numerical method
is positively conservative, resolves isolated shock and contact waves,
exactly, when discretizing the one-dimensional Euler equations.
Since Euler equations have three distinct characteristic fields, what-
ever the spatial dimension considered, the HLLC approach is a com-
plete Riemann solver, in that case.

However, for systems with eigenstructure containing more than
three distinct characteristic fields, the HLLC method becomes
incomplete and behaves similarly to HLL for the one-dimensional
Euler equations.

Currently, there exists two ways for extending the HLLC
approach:

The first one is to admit the correct number of characteristic
fields for the system of interest by increasing the number of inter-
mediate waves. This is, for example, the line followed in [7]or [8,9].
Another solution due to Linde [6], is to design an HLL-type method
that is not tied to specific characteristic properties of the governing
equations. This can be done, for example, by introducing into the
initially two-state HLL Riemann solver, a generic middle wave of
which the strength is sized by a heuristic normalized parameter.
On one hand, if the solution is locally smooth, this parameter is 0
and the resulting numerical flux returns to the single-state HLL
flux. On the other side, if an isolated discontinuity exists into the
Riemann fan, this parameter becomes 1 and the middle wave con-
nects the left and right states of the initial Riemann problem,
according to the theory developed in [2].

In [6], the ‘‘strength indicator’’ of the middle wave is obtained
through the least-square solution of the one-dimensional Ran-
kine-Hugoniot jump condition with appropriate re-scaling; in
[12], another strategy is devised for computing this parameter.

With Linde’s approach, the resulting solver makes it possible to
resolve all physically admissible isolated discontinuities and can be
applied for a complex system without necessitating a detailed
knowledge of its characteristic field.

The work we present in this article follows this latter line of
thought and tries to cure some of its deficiencies.

Indeed, Linde’s flux may generate unphysical oscillations due to
the specific definition of the strength indicator of the middle wave;
this is the reason why in [12], a reformulation of this parameter
was designed to smooth unwanted oscillations while preserving
the positivity of density and internal energy. The resulting solver
is a positively conservative variant of Linde’s solver. In both works
[6,12], the strength indicator is intrinsically one-dimensional since
it was defined from the left and right states of the solution at the
cell interfaces.

In this article, the solution we propose for defining this crucial
parameter is based upon polynomial considerations and is suited
for multi-dimensional computations. For this purpose, we utilize
an extension of the multi-dimensional CWENO interpolation pro-
cedure, devised in [18] from the ideas of [13,14,16,17], and initially
designed to produce a high-order monotonicity-preserving MUS-
CL-like scheme.

Indeed, to avoid Gibbs-like phenomena in presence of disconti-
nuities, this interpolation procedure uses an adaptive stencil based

upon a ‘‘smoothness indicator’’ of the solution [13,14]. Thus, by a
suited re-normalization, we define this smoothness indicator as
the strength indicator of the middle wave. By doing so, when there
is a discontinuity, this indicator becomes close to 1 and the scheme
solves the multi-dimensional Rankine-Hugoniot equations in a
least-square sense, this in the normal directions to the mesh. Alter-
natively, when the solution is smooth, the strength indicator
asymptotically tends towards 0 and, therefore, the contribution
due to the middle wave becomes negligible: the resulting solver
resembles the classical HLL-scheme.

Theoretically, the advantage of such a choice is twofold: firstly,
in contrast with above mentioned solutions, the strength indicator
is now defined in a multi-dimensional way; secondly, its definition
is closely tied with the non-oscillatory properties of the interpola-
tion polynomial used in the MUSCL procedure of the scheme. This
way, we can design a HLL-type Riemann solver of which the
numerical characteristics continuously and dynamically adapt to
the regularity of the solution. This behavior is expected to smooth
out the spurious oscillations that might be generated using Linde’s
approach, while preserving its accuracy properties in presence of
isolated discontinuities.

Finally, to characterize the resulting scheme completely, it re-
mains to check its stability properties. Indeed, the difficulty for
high-order schemes to handle complex flow conditions, necessi-
tates adding one more criterion to the design of an approximate
Riemann solver: the positive conservation. Initially introduced by
Einfeldt et al. [5] the term ‘‘positively conservative’’ refers to a con-
servative scheme that predicts positive density and pressure for all
time if data considered are physically meaningful. The positivity of
a numerical scheme is a weak stability principle that does not pre-
vent some forms of instability such as a Gibbs-like phenomenon
but makes it possible to derive the maximum allowable time-step.
In addition, it is significant that such a stability property is supple-
mented by a set of discrete entropy inequalities in order to discard
non-physical solutions. In [19] Perthame-Shu provided a general
framework and illustrated the way to impose positivity of density
and pressure for finite volume schemes, for one and two space
dimensions and for first and third order accuracy, by starting from
a positivity-preserving approximate 1D Riemann solver. Later on,
following these ideas, some variants were proposed [20–23] in or-
der to generalize this work. In addition, second-order entropy
inequalities were demonstrated for some second-order 1D [22]
or 2D [21] schemes as long as a relevant CFL condition and a lim-
itation procedure are considered.

In this paper, starting from the stability properties of the
asymptotic form for the 1D version of the first-order HLL-RH
scheme, we establish that these properties are sufficient to guaran-
tee positive conservation for the resulting two-dimensional, first-
order, finite-volume scheme, on arbitrary grids. We demonstrate
that the time-step limitation to reach this result is not too restric-
tive compared to the initial 1D condition. In addition, we demon-
strate that the scheme then verifies a set of entropy inequalities
if a simple entropy condition is added for the one-dimensional ver-
sion of the scheme. Extension of these properties to high-order
accuracy is promoted by applying a limitation procedure to the
high-order conservative increments of the numerical solution. To
this aim, the limitation procedure initially devised in [19] and gen-
eralized in [21,22], is adapted to our scheme.

The resulting numerical method applies to the compressible Eu-
ler equations.

The outline of this article is as follows: in Section 2, some funda-
mentals and notations concerning the finite volume framework of
the method, are given. In Section 3, the procedure to generate the
new approximate Riemann solver (HLL-RH) is described; the least-
square method that makes it possible to solve the multi-dimen-
sional Rankine-Hugoniot equations, is detailed. Section 4 is devoted
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