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Abstract

We present a generalization of the coprime factors model reduction method of Meyer and propose a balanced truncation reduction algorithm
for a class of systems containing linear parameter varying and uncertain system models. A complete derivation of coprime factorizations
for this class of systems is also given. The reduction method proposed is thus applicable to linear parameter varying and uncertain system
realizations that do not satisfy the structured �2-induced stability constraint required in the standard nonfactored case. Reduction error bounds
in the �2-induced norm of the factorized mapping are given.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Model reduction methods with guaranteed error bounds have previously been established for linear fractional and uncertain
systems [2,14,37,17,9,22,13,47]. A simplistic view of most of these existing reduction results is as generalizations of the balanced
truncation and singular perturbation approximation techniques developed for standard state-space models [23,1,16,20,34,30].
As such, an appropriate generalization of state-space type realizations is typically used to describe the system. In order to apply
the reduction methods, the generalized state-space system models are then required to satisfy a robust or a structured stability
condition.

In this paper, we propose a method for the reduction of a class of generalized state-space systems containing linear parameter
varying (LPV) and uncertain systems that do not satisfy the structured stability constraints required by the existing methods. In
particular, we consider an extension of the coprime factors approach proposed by Meyer for standard state-space systems [29];
a complete derivation of coprime factorizations for this class of systems thus is presented as well. The systems we consider
are therefore only required to be stabilizable and detectable in the sense defined by Lu et al. [26]. Error bounds are given in
the �2-induced norm of the factorized linear fractional mapping, where this norm is computed over a unity norm-bounded set.
These error bounds are thus useful for stability robustness analysis when interpreted in the robustness framework for coprime
factors, or in a gap-metric framework [27,46,19,45].

We begin this paper with a brief overview of the linear fractional framework now commonly used to represent uncertain
systems and linear parameter varying systems, and more recently, linear time-varying systems and spatial array systems; for
simplicity we will collectively refer to the systems we consider as LFT systems. This overview is followed by an outline of
stability conditions for these systems, and a review of existing model reduction results; this material is found in Section 2.
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The proposed factorized reduction method and the development of coprime factorizations for LFT systems is then presented
in Section 3, and a basic computational reduction approach is given. Note that in the derivation of our results, we focus on
dynamical systems evolving in discrete-time. The results presented herein are based on a preliminary reduction algorithm given
in [7].

2. Preliminaries

Matrices in the real and complex numbers will be written Rn×m and Cn×m, respectively; the n × n identity matrix is denoted
by In. For a matrix A ∈ Cn×m, A∗ denotes the complex conjugate transpose, and more generally for operators the adjoint. The
dimensions of a matrix A are denoted dim(A). When a matrix A has only real eigenvalues we will use �min(A) to indicate the
smallest of these. For notational convenience, dimensions will not be given unless pertinent to the discussion.

In this paper �(X) denotes the linear space of sequences indexed by {0, 1, 2, . . .} taking values in the Euclidean space X. The
subspace �2(X) contains the sequences that are square summable; it has the usual norm

‖x‖2 := (|x(0)|2 + |x(1)|2 + |x(2)|2 + · · · )1/2,

where | · | denotes the Euclidean norm on X. We will often abbreviate these denotations by � and �2 when the base space X is
clear from the context or not relevant to the discussion.

The vector space of linear mappings on � will be denoted byL(�). Note thatL(�) includes maps between spaces with different
base spaces, but this is not explicitly represented in our notation. It will be useful in the sequel to refer to the infinite block-matrix
associated with a mapping G ∈ L(�): we will use the notation [G]ij to refer to the matrix entries of this representation with
respect to the standard basis for �.

Throughout the paper � will denote the standard shift or delay mapping on �. The causal subset Lc(�) of the linear mappings
consists of the operators inL(�) which commute with �; namely, this set consists of mappings which have lower block-triangular
infinite-matrix representations with respect to the standard basis for �. Similarly, we define Lc(�2) to be the bounded linear
mappings on �2 that are causal. The induced norm of an operator G ∈ Lc(�2) is given by

‖G‖�2→�2 := sup
x∈�2,x �=0

‖Gx‖2

‖x‖2
.

Given any element G in Lc(�2) we can extend its domain to all of � using its infinite matrix representation. Thus we can
properly regard Lc(�2) as a subspace of the vector space Lc(�). An important property of the subspace Lc(�) ⊂ L(�) is that
the inverse of any element, if it exists, will also be in Lc(�); that is, if G ∈ Lc(�) has an inverse in L(�) it must be causal.

Given a matrix A in Rn×m it clearly defines a memoryless mapping in Lc(�2) by pointwise multiplication; in the paper we
will not distinguish between this mapping and the matrix A, and will just refer to this memoryless mapping as a “matrix”.

2.1. Linear fractional transformations

The LFT paradigm, described below and pictured in Fig. 1, traditionally has allowed for a mathematical representation of
uncertainty in system models.

In the systems we consider, we assume G is a matrix and � could represent any of the following: repeated scalar uncertainty
structures, exogenous time-varying parameters in linear parameter varying systems, temporal and spatial transform variables in
spatial array systems. For specific examples of physical systems leading to these types of models see [5,44,10,11,3,35].

The mapping � will be parametrized in a special way in terms of an operator p-tuple denoted by � = (�1, �2, . . . , �p), where
each �i is in Lc(�2(R)). Given the p-tuple of dimensions m = (m1, . . . , mp) we associate with � the operator

�(�) = diag[�1Im1 , . . . , �pImp ]. (1)

As in Fig. 1 we will often suppress the explicit dependence on � in our notation. Here the notation �iImi
is used to signify the

operator in Lc(�2(Rmi )) whose action on any element x ∈ �2(Rmi ) is defined by

(�iImi
)x := (�ix1, �ix2, . . . , �ixmi

),

where the scalar sequences xj are the channels of x; more precisely, x =: (x1, x2, . . . , xmi
). Thus � is a member ofLc(�2(Rm)),

where m := m1 + · · · + mp.
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