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a b s t r a c t

In this study, a Brinkman penalization method (BPM) is extended for prediction of acoustic scattering
from complex geometries. The main idea of the BPM is to model the solid obstacle as a porous material
with zero porosity and permeability. With the aim of increasing the spatial accuracy at the immersed
boundaries, computation is carried out on the boundary-fitted Cartesian-like grid with a high-order com-
pact scheme combined with one-side differencing/filtering technique at the boundaries, while a slip
boundary condition at the wall is imposed by introducing the ‘anisotropic’ penalization terms to the
momentum equations. Several test cases are considered to demonstrate the accuracy, robustness and fea-
sibility of the BPM. Numerical results are in excellent agreement with the analytic solutions for single and
two cylinder scattering problems. The present BPM is then used to solve the acoustic scattering from a
three-element high-lift wing (30P30N model).

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical simulation of acoustic scattering from complex
geometries has received attention in a wide range of aeroacoustic
problems, such as slat noise and flap side-edge noise from a mul-
ti-element airfoil in high-lift configuration, rotor–stator interaction
noise in turbo-machinery, etc. There are two main strategies in di-
rect simulation of acoustic scattering from solid boundaries of com-
plexity, i.e. structured/unstructured body-fitted grid methods [1–3]
and immersed boundary methods [4–6]. In the former, implemen-
tation of wall boundary condition is straightforward, attaining a
desired degree of accuracy at the boundaries. However, when
complex geometries are concerned, the structured body-fitted grid
method or even the overset grid method [7–9] often meets difficul-
ties associated with the grid generation as well as with the quality of
the grids. A discontinuous Galerkin (DG) method [10–12] based on
the unstructured grids promises success for real complex
geometries but computational cost has always been an issue.

In this regard, an immersed boundary technique can be
considered as an alternative because of its simple and efficient
implementation for arbitrarily shaped surfaces with reasonable
computational cost. Following the pioneering work of Peskin
[13], a number of immersed boundary methods have been

proposed to handle the complex geometries [4,14–16]. Among
them, the Brinkman penalization method (BPM) [16], which was
originally developed to model the fluid flow in porous media, ap-
pears attractive because of its easiness to handle the solid obstacle
by simply treating as a porous medium of high impedance. In BPM,
porosity and permeability in the penalty terms which are added in
the compressible Navier–Stokes equations are set to zero in the so-
lid region to impose the immersed boundary effect on the fluids. A
no-slip boundary condition is therefore enforced naturally at the
solid boundary. There are, however, two inherent limitations with
this penalization technique. First, it requires a large number of grid
points in solid region to retain the order of accuracy at the wall,
thus making the method impractical at highly sophisticated geom-
etries. Another drawback is that only the no-slip boundary condi-
tion is satisfied at the solid wall, whereas a slip boundary
condition has to be met with the full or linearized Euler equations.

In the present study, we address these numerical issues. With
aim of increasing the spatial accuracy at the embedded boundary,
we conform the immersed boundary grids to the actual shape of
the surface following the idea of reshaped cell approach [17,18].
The slip boundary condition at the solid surface is imposed by
introducing the ‘anisotropic’ penalization terms in the momentum
equations. The validity of the present method is then assessed by
considering the acoustic scattering from (i) a single cylinder, (ii)
two circular cylinders and (iii) three element high-lift wing with
the deployed slat and flap. We also discuss numerical issues re-
lated to the implementation of the reshaped cell approach and to
the stiffness due to the penalty terms.
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2. Computational methodologies

The computational methodologies are given in this section,
including the governing equations for the Brinkman penalization
method, the high-order numerical schemes with the one-sided dif-
ferencing/filtering techniques, the implicit treatment of the pen-
alty terms, and the boundary-fitted grid generation details.

2.1. Brinkman penalization method

In many of aeroacoustic problems, a two-dimensional acoustic
field around a steady mean flow is governed by the linearized Euler
equations written as,
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where S is the source term, q0, Ui and P represent the laminar or tur-
bulent flow field, and q0, u0i and p0 are the fluctuating variables non-
dimensionalized by the ambient density q0, the speed of sound c0,
and the reference pressure q0c2

0, respectively. In the conventional
body-fitted grid method, the acoustic field can be directly solved
with Eqs. (1)–(3), while a slip boundary condition is explicitly im-
posed at the solid conformal boundaries.

In the present Brinkman penalization method, the slip bound-
ary condition at the impermeable surface can be imposed by add-
ing the penalty terms into the momentum equations and
modifying the continuity and energy equations as:
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where � is the porosity defined as the ratio of the volume occupied
by the fluid to the total volume of porous material, ranging from 0
to 1. In Eq. (5), Rij is the ‘anisotropic’ permeability tensor [19] that
enforces the embedded solid surface to satisfy the slip boundary
condition, and is given by:

Rij ¼
1
K

ninj ð7Þ

where K is the non-dimensionalized permeability of homogeneous
porous medium, and ni is the unit normal vector to the imperme-
able boundary.

The main advantage of this penalization technique is that no
additional treatment is needed to impose the boundary condition.
Instead, a single set of governing equations with penalty terms is
applied to the whole computational domain, in which different
porosity � and permeability K are assigned for fluids and solids.
In this approach, the only thing needed is to calculate the wall nor-
mal vector, ~n inside of the obstacles by the use of level set method
or analytically providing the normal vector, and to define appropri-
ate porosity and permeability for each region (see Fig. 1). For
example, when porosity is equal to unity and permeability be-
comes infinite in the fluid region, Eqs. (4)–(6) returns to conven-
tional equations for wave propagation. On the contrary, when
porosity and permeability approach zero for solid surfaces, the
inertia terms become negligible compared to the penalty terms
in the momentum equations so that only the normal component

of the velocity is forced to be zero and the slip condition is asymp-
totically satisfied at the impermeable surfaces. Further discussion
of the Brinkman penalization method will be made in the following
section.

2.2. Asymptotic analysis

Consider a two-dimensional wave propagation in a fluid at rest
(Ui = 0). In this case, the governing equations for the Brinkman
penalization method (BPM), Eqs. (4)–(6) can be re-written as:
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where the hydrodynamic density, q0 = 1 and the relation of
cP ¼ q0c2

0 ¼ 1 are used. Multiplying nx and ny to Eqs. (9) and (10),
respectively, and combining the resultant equations yield,
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where u0n ¼ nxu0 þ nyv 0 is the wall normal velocity and @p0/
@n = nx@p0/@x + ny@p0/@y is the normal derivative of pressure fluctu-
ation on the solid surface.

Similarly, taking the dot product of a unit tangent vector~s with
Eqs. (9) and (10) yields,
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In Eqs. (12) and (13), it is clearly shown ‘anisotropic’ penalty terms
in momentum equations are only responsible for the change of fluc-
tuating variables in the wall normal direction. In other words, only
the normal component of fluctuating velocity, u0n tends to be zero at
the embedded boundaries, because in Eq. (12) the first two terms
become negligible and the penalty term u0n=K dominates as K ? 0
at the solid surface. This result suggests the slip boundary condition
on the solid surface be asymptotically satisfied

u0n � 0;
@p0

@n
� 0 ð14Þ

So, the present extension of BPM provides a simple procedure for
imposing the immersed boundary effect on the fluid without addi-
tional treatment for boundary condition.

Now, in order to verify the physical consistency of the
present BPM, the asymptotic analysis is performed for wave

Fig. 1. Concept of Brinkman penalization method.
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