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a b s t r a c t

We present a certified reduced basis method for high-fidelity real-time solution of parametrized partial
differential equations on deployed platforms. Applications include in situ parameter estimation, adaptive
design and control, interactive synthesis and visualization, and individuated product specification. We
emphasize a new hierarchical architecture particularly well suited to the reduced basis computational
paradigm: the expensive Offline stage is conducted pre-deployment on a parallel supercomputer (in
our examples, the TeraGrid machine Ranger); the inexpensive Online stage is conducted ‘‘in the field”
on ubiquitous thin/inexpensive platforms such as laptops, tablets, smartphones (in our examples, the
Nexus One Android-based phone), or embedded chips. We illustrate our approach with three examples:
a two-dimensional Helmholtz acoustics ‘‘horn” problem; a three-dimensional transient heat conduction
‘‘Swiss Cheese” problem; and a three-dimensional unsteady incompressible Navier–Stokes low-Rey-
nolds-number ‘‘eddy-promoter” problem.

� 2011 Published by Elsevier Ltd.

1. Introduction

Many engineering applications require high-fidelity real-time
simulation on deployed platforms ‘‘in the field.” Examples include
in situ parameter estimation and identification procedures, embed-
ded adaptive design and control systems, virtual reality/synthesis
and visualization environments (from music to medicine), and
individuated context-dependent product specification frame-
works. In all these cases the mathematical model must be sophis-
ticated, the numerical approximation must be accurate, and the
response to a query must be rapid—commensurate with real-time
decision or interaction requirements—despite the limited proces-
sor power and storage capacity available in the field. We shall
furthermore be interested in both input–output evaluation and
visualization; the latter places additional demands on memory.

We shall suppose that the system input l 2 D � RP enters as a
parameter in a partial differential equation (PDE) which describes
the relevant physical phenomena over the time interval of interest
0 6 t 6 tf and the appropriate spatial domain X � Rd; d ¼ 2 or 3.
This PDE, say a linear-time-invariant (LTI) parabolic equation,
yields (i) a field variable over X, u(t;l) 2 X(X) (where X(X) is an
appropriate function space), and (ii) a scalar output of interest,
sðt; lÞ 2 R, which can be expressed as a (say) linear functional of
the field variable, s(t;l) = ‘(u(t;l)). (In actual practice we may con-

sider many outputs.) Note that the parameter dependence pro-
ceeds from the PDE through the field variable and finally to the
engineering output.

We shall distinguish between the pre-deployment period and
the post-deployment or equivalently deployed period. The pre-
deployment period takes place in the laboratory: we prepare the
system and associated computational model for subsequent ser-
vice. The deployed period takes place in the field: we put the sys-
tem and associated computational model—now implemented on
an embedded or more generally ‘‘deployed platform”—into service.
In the deployed stage the computational task is well-prescribed:
given a query instance l0 2 D we wish to (a) predict the output,
l0 2 D! ðuðtk;l0Þ !Þsðtk;l0Þ, 0 6 k 6 K, and (b) visualize the field,
l0 2 D! uðtk;l0ÞjR, 0 6 k 6 K; here R � X is a region or manifold
selected for rendering. (We reserve l0 to denote a query instance
– a request post-deployment.) Note the field variable plays an
important role both in input–output evaluation and of course in
visualization.

To perform this computational task the PDE is typically discret-
ized by a finite difference discretization in time and a finite ele-
ment (FE) discretization in space. In time we consider a (say)
Crank–Nicolson scheme associated to time levels tk = kDt, 0 6 k 6 K,
where Dt = tf/K; in space we consider Galerkin projection over a FE
approximation subspace XNð� XÞ of large dimension N. Our
‘‘truth” approximation is then given, for any l 2 D, by uNðtk;lÞ;
sNðtk;lÞ ¼ ‘ðuNðtk;lÞÞ, 0 6 k 6 K. We note that, given our restric-
tion to l 2 D, all solutions of interest perforce reside on the para-
metrically induced manifold MN � fuNðtk;lÞj0 6 k 6 K;l 2 Dg.
We observe that this manifold is relatively low-dimensional; we
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can further anticipate, and in many cases demonstrate, that this
manifold is smooth.

Our truth approximation shall provide, for sufficiently small Dt
and in particular for sufficiently large N, the desired accuracy.
However, we cannot expect real-time response in particular on de-
ployed platforms typically characterized by limited processor
power and memory capacity. We thus pursue the certified reduced
basis (RB) approach [1–5] as an approximation to the truth approx-
imation. In time we directly inherit the Crank–Nicolson discretiza-
tion of the truth; in space we consider Galerkin projection over an
RB approximation space XNð� XNÞ of small dimension N. Our RB
approximation is then given, for any l 2 D, by uN(tk;l),sN(tk;l) =
‘(uN(tk;l)), 0 < k 6 K. We also provide rigorous a posteriori bounds,
DN(tk;l) and Ds

Nðtk;lÞ, for the error in the RB field approximation
and the RB output approximation, respectively: for any
l 2 D; kuNðtk; lÞ � uNðtk; lÞkX 6 DNðtk; lÞ; jsNðtk; lÞ � sNðtk; lÞj 6
Ds

Nðtk;lÞ, 0 6 k 6 K. We may thus say that our RB approximation is
certified.

The RB approximation space XN is specifically designed to well
approximate functions which reside on the parametrically induced
manifold of interest, MN: indeed, XN is developed as the span of
optimally selected (and combined) snapshots on the manifold
MN. (In contrast, even in a mesh-adaptive context, the truth FE
approximation space XN can represent a large class of functions
very distant from MN.) We can thus expect N �N. The latter
may in certain simple instances be proven, may in general be con-
firmed a posteriori through our error bounds, and may in practice
be observed in a wide variety of problems. (Of course the ‘‘con-
stants” will certainly depend on the particular problem under
study and especially on the number of parameters, P.) This
reduction in dimension in conjunction with an Offline–Online com-
putational approach provides the RB advantage in the real-time de-
ployed context. We now discuss the Offline–Online decomposition.

In the Offline stage we develop the RB space: we identify opti-
mal (combinations of) snapshots on MN and we ‘‘precompute”
various parameter-independent functionals of these snapshots
implicated in subsequent RB approximations and associated RB er-
ror bounds; this Offline stage is expensive—OðNcÞ FLOPs, where c
is a problem-dependent factor related to the computational cost of
the truth solves. The Offline stage yields a (problem-dependent)
Online Dataset; this dataset is small—O(Q,N) data, where Q mea-
sures the parametric complexity of our PDE. In the Online stage
we invoke the Online Dataset to perform rapid certified output
evaluation: given any l0 2 D we calculate the RB output approxi-
mation and associated RB output error bound, respectively sN(tk;l0)
and Ds

Nðtk;l0Þ, 0 6 k 6 K. This Online stage is very inexpensive—
O(Q,N,K) FLOPs with N �N. (In the next section we also discuss
Online certified visualization; in this case the Online Dataset and
Online operation count will depend on N and in particular on
the number of FE degrees of freedom associated with R. We note,
however, that the visualization is a useful but optional step: the
key quantities are the output(s) and associated error bound(s).)

We now associate the Offline stage to the pre-deployment per-
iod and the Online stage to the post-deployment period. The
expensive Offline stage is conducted prior to deployment and
hence the considerable Offline cost is not our principal concern.
(Of course, control of the Offline cost is, in practice, very important;
we discuss this further in the next section.) Only the inexpensive
Online stage is invoked in the deployed period and hence only
the very low Online cost will determine our primary performance
metric—reliable and rapid response in the field. We may thus
achieve our objective of high-fidelity real-time simulation on de-
ployed platforms, as we now describe.

In the Online stage, the response to each query instance,
l0 2 D! sNðtk; l0Þ;Ds

Nðtk; l0Þ, 0 6 k 6 K, requires sufficiently few
operations—O(Q,N,K) FLOPs, independent of N—and sufficiently

little data—O(Q,N) storage for the Online Dataset, independent of
N—to achieve real-time response on deployed (‘‘thin”) platforms.
Furthermore, our rigorous error bound Ds

Nðtk;l0Þ, 0 6 k 6 K, will
guarantee the accuracy of the RB output prediction relative to
the high-fidelity truth. (We emphasize that the error bound does
not require appeal to uNðtk;l0Þ; sNðtk;l0Þ.) We thus obtain not just
rapid, but also accurate, optimal, and safe decisions in the field.

In Section 2 we describe, for a simple model problem, the re-
duced basis approach. We emphasize the computational aspects:
the RB approximation and associated RB a posteriori error estima-
tion ‘‘kernels”; the procedure for identification of optimal RB
approximation spaces; and the Offline, Online Dataset, and Online
decomposition. In Section 3 we elaborate upon the Offline and On-
line procedures within a hierarchical architecture: we present the
Offline procedure from a parallel perspective and describe a partic-
ular implementation on the TeraGrid supercomputer Ranger at the
Texas Advanced Computing Center (TACC); we present the Online
procedure from a deployed/embedded perspective and describe a
particular implementation on a Nexus One Android phone ‘‘model
platform.” In Section 4 we present results for three examples: a
frequency-domain acoustics problem in a two-dimensional horn
configuration X —to illustrate the necessity of high-fidelity PDE
models and accurate numerical solutions; a transient linear heat
conduction problem in a three-dimensional ‘‘Swiss Cheese” config-
uration X—to illustrate treatment of many parameters; and a tran-
sient incompressible fluid flow problem in a three-dimensional
sphere-in-duct configuration X —to illustrate extension to (qua-
dratic) nonlinearities.

2. Certified reduced basis formulation

2.1. Model problem

We shall illustrate the approach for a very simple model prob-
lem. We consider steady heat conduction in a (say, polygonal) do-
main X = X1 [X2: the normalized thermal conductivity in X1

(respectively, X2) is unity (respectively, j). We apply a uniform
unit heat source over the entire domain X. We require that the
temperature field, u, vanish—zero Dirichlet conditions—on the do-
main boundary oX. We consider a single (P = 1) parameter: l � j,
the conductivity in X2; D, the parameter domain, is given by (say)
the interval [1,10]. We take for our output of interest, s, the
integral of the temperature over X1. (Note we may, for example,
expand the model to include convection by a prescribed incom-
pressible velocity field. Many other extensions are possible.)

In mathematical terms, u(l) 2 X, where X ¼ H1
0ðXÞ; here

H1
0ðXÞ ¼ fv 2 H1ðXÞjv j@X ¼ 0g; H1ðXÞ ¼ fv 2 L2ðXÞjrv 2 ðL2ðXÞÞ2g,

and L2(X) is the space of square integrable functions over X. We
associate to the space X the inner product ðw;vÞX �

R
Xrw � rv

and induced norm kwkX �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw;wÞX

p
and to the space L2(X) the in-

ner product ðw;vÞ �
R

X wv and induced norm kwk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw;wÞ

p
. We

then define the continuous and coercive bilinear forms
a1 �

R
X1 rw � rv , a2 �

R
X2 rw � rv , and

aðw; v; lÞ � a1ðw;vÞ þ la2ðw;vÞ; 8w; v 2 X; ð1Þ

and the bounded linear forms f ðvÞ ¼
R

X v and ‘ðvÞ ¼
R

X1 v . We can
now provide the weak statement of our PDE: given l 2 D, find
u(l) 2 X such that a(u(l),v;l) = f(v), "v 2 X; evaluate s(l) = ‘(u(l)).
(We may readily accommodate several or even many outputs.)

We note that (1) is a special case of a more general hypothesis.
We say that our bilinear form a is ‘‘affine in parameter” (or more
precisely, ‘‘affine in functions of the parameter”) if we can write

aðw; v; lÞ ¼
XQ

q¼1

HqðlÞaqðw; vÞ; ð2Þ
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