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a b s t r a c t

An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a
multi-level shock-type adaptive refinement technique is presented and applied to investigate transient
two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with
state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolution
and high accuracy. Two benchmark problems, modelling a single crack and a random porous medium,
are used to demonstrate the robustness of the method and illustrate the capabilities of the adaptive
refinement technique in resolving the saturation field and the complex interaction (transport phenom-
ena) between two fluids in heterogeneous media.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Modelling of two-phase flow in porous media plays a key role in
many engineering areas such as environmental remediation [1,2],
oil recovery [3–6] and water management in polymer electrolyte
fuel cells [7–12]. In polymer electrolyte fuel cells, which motivated
in part the developments described herein, water produced at the
cathode as a result of the electrochemical reaction can condense
[7,8], and is eventually transported through the porous electrode
by a combination of mechanisms, including capillary diffusion. At
high reaction rates however, an imbalance between liquid water
production and transport can result in flooding of the electrode
and, consequently, restricted access of the reactant gases to the
reactions sites (catalyst layer); this results in a significant perfor-
mance drop. Understanding of the two-phase transport processes
and design of the porous media to mitigate this are therefore cru-
cial and can be facilitated by robust and physically representative
simulations. A number of recent publications have addressed some
of the modelling challenges associated with two-phase transport in
complex porous media. These include the development of
improved numerical schemes for simulation of multi-phase,
multi-component processes [13]; interface conditions and lineari-
zation schemes [14]; advanced numerical procedures based on
high-order time integration schemes [15], fractional flow ap-
proaches [16], and reduced degrees of freedom [17]. Theoretical
investigations based on pore-network models [18], non-oscillation

central scheme [19], and multi-scale finite volume/element meth-
ods [20–24] have also been developed. Helmig et al. [25] note that
numerical methods have to be able to capture both advection or
diffusion/dispersion dominated processes. An excellent review of
the recent modelling efforts and current challenges is provided
by Gerritsen and Durlofsky [5]. A key challenge remains the robust
and accurate resolution of fine-scale localized flow.

In transient two-phase flow simulations related to petroleum
engineering, the implicit pressure and explicit saturation (IMPES)
algorithm, originally developed by Sheldon et al. [26] and Stone
and Gardner [27], is widely used. The basic idea of this classical
method when applied to two-phase flow in porous media is to sep-
arate the computation of pressure from that of saturation. Namely,
the coupled system is split into a pressure equation and a satura-
tion equation, and the pressure and saturation equations are solved
using implicit and explicit time approximation approaches, respec-
tively. This method is easy to implement and efficient to solve, and
requires less memory than other methods such as the simulta-
neous solution method [28]. Detailed discussions of this method
can be found in [26,27], and recent algorithmic improvements
are discussed in Chen et al. [29,30].

The numerical simulation of transient two-phase flow transport
in heterogeneous porous media (Fig. 1) is computationally expen-
sive, and adequate resolution of complex flow features is not
always possible, thus compromising the reliability of the results.
Achieving physically representative simulations that resolve all
salient length and time scales and localized flow features efficiently
remains a challenge. An alternative to global mesh refinement which
demands very large computing resources, is adaptive mesh
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refinement (AMR). A variety of AMR methods have been proposed
depending on the type of physical problem and associated partial
differential equations (PDE), and a large body of literature [31–33]
exists for these methods. One can use a simple refinement indicator,
such as those proposed in [34], to refine and coarsen the mesh at
each time step, depending on where the discontinuities (phase
boundaries in the present context) propagate. Recent work by Noelle
et al. [35] shows that a central scheme with AMR can be imple-
mented on non-conforming 3D Cartesian grids to extend the classi-
cal hydrodynamics AMR framework [30]. Smoothness indicators for
conservation laws were developed by [36]. Another approach to
adaption is the use of a moving-mesh method such as that of Tang
and Tang [37] to align the mesh with the important features of the
flow. In any case, the major advantages of using grid adaption are
high-quality resolution of the physical features as they evolve in
space and time while simultaneously reducing computational cost
by refining only in areas where necessary and coarsening in areas
where unnecessarily fine grids exist. Note that in the context of mul-
ti-phase flow the porous medium is frequently strongly heteroge-
neous within the computational domain. However, as we will
show below, there is no need to resolve these heterogeneities every-
where unless they interact with flow fronts. Consequently, adaptive
mesh refinement has the potential to significantly reduce the com-
putational cost of multi-phase flow simulations. Despite these obvi-
ous advantages, the literature is relatively limited for transient
adaptive methods suitable for multi-phase flow in porous media.

When a general continuous finite element discretization is
adopted for the saturation transport (advection) equation in two-
phase flow problems, spurious and unphysical oscillations appear
in the solution, requiring the introduction of a stabilizing (diffusive)
term [38]. However, this results in smearing of sharp fronts and can
also cause grid-orientation difficulties [38]. Finding the right bal-
ance between preserving accuracy and providing stability is there-
fore of great importance in the numerical solution of conservation
laws. In this work, we implement the artificial diffusion terms pro-
posed by Guermond and Pasquetti [39]. This entropy-based nonlin-
ear viscosity provides a powerful approach yielding both accuracy
and stability. First, the artificial viscosity term acts only in the vicin-
ity of strong gradients in the saturation and other discontinuities
[39]; secondly, the term does not affect the solution in smooth re-
gions; and finally the scheme offers higher order accuracy and sta-

bility than simple upwind schemes [39]. In this paper, this approach
is combined with an IMPES algorithm and we present an extension
of shock-type adaptive refinement to saturation gradients to inves-
tigate transient transport phenomena in heterogeneous porous
media. The use of this shock-type adaptive refinement technique al-
lows us to provide fine-scale resolution locally and to concentrate
numerical efforts near the area where the two-phase interfaces
evolve.

2. Basic numerical model

Let us consider the flow of two incompressible, immiscible flu-
ids in a porous media domain X � R2 in which the movement (dis-
placement) of two fluids is dominated by viscous effects and the
effects of gravity and capillary pressure are negligible. The two
phases are referred to as wetting and non-wetting, and identified
by subscripts w and nw, respectively. Thus in a water–oil system
(hydrophilic case), water is the wetting and oil the non-wetting
phase; in the and air–water system (hydrophobic case), air is the
wetting phase and water the non-wetting phase. The mass-aver-
aged velocity with which each of the two phases moves is deter-
mined by Darcy’s law. It states that the velocity is proportional
to the pressure gradient [5]:

uj ¼ �
krjðSÞ
lj

K � rp; ð1Þ

where uj is the velocity of phase j = w, nw, K is the permeability ten-
sor, krj is the relative permeability of phase j, p is the pressure, and
lj is the viscosity of phase j. Finally, S is the saturation of the porous
media defined as

S ¼ Vw

Vw þ Vnw
; ð2Þ

where Vw and Vnw are the volume fraction of the wetting and non-
wetting phases. In this work, the permeability tensor, K, is a second-
order diagonal tensor.

After combining Darcy’s law with the mass conservation equa-
tion, the following set of equations is obtained [5]:

ut ¼ �KktðSÞrp; ð3Þ
r � ut ¼ q; ð4Þ

�
@S
@t
þr � ðutFðSÞÞ ¼ 0; ð5Þ

where kt is the total mobility, � is the porosity, F is the fractional
flow of the wetting phase, q is a source term, and ut is the total
velocity. These are given by:

ktðSÞ ¼ kw þ knw ¼
krwðSÞ
lw

þ krnwðSÞ
lnw

; ð6Þ

FðSÞ ¼ kw

kt
¼ kw

kw þ knw
¼ krwðSÞ=lw

krwðSÞ=lw þ krnwðSÞ=lnw
; ð7Þ

ut ¼ uw þ unw ¼ �ktðSÞK � rp: ð8Þ

For the sake of simplicity, we consider the case with no source
term q. Furthermore the porosity � is set to one as it is essentially a
scaling factor that does not affect the qualitative behaviour of Eq.
(5). For the purpose of this paper, we will assume the following
concrete form for the total mobility kt and the fractional flow F(S):

ktðSÞ ¼
S2

lw
þ ð1� SÞ2

lnw
; ð9Þ

FðSÞ ¼ S2

S2 þ 0:2 � ð1� SÞ2
; ð10Þ

where lw = 0.2 and lnw = 1.

Fig. 1. Schematic of fluid flow in a heterogeneous porous medium.
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