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We analyze the accuracy of wall shear stress measurements in lattice Boltzmann simulations that are
based on a voxel representation of the geometry and staircase approximation of boundaries. Such
approximations are commonly used in the context of lattice Boltzmann simulations, because they favor
the use of simple and highly efficient data structures. We show on several two- and three-dimensional
simulations that this low-order approximation of the boundary affects the accuracy of wall shear stress
measurements in areas directly adjacent to the wall. A few lattice nodes apart from the wall, the accuracy
is however largely improved, and can be considered to be compatible with the overall accuracy of a sim-
ulation at a given coarseness level of the grid. This result is interpreted as a justification for the use of
walls with staircase shape, even in simulations with high expectations regarding the level of accuracy.
Furthermore, we propose a novel method for establishing the direction of the wall normal, a quantity
which is required for the computation of the wall shear stress. With this method, the wall normal is com-
puted from local data that is extracted from the results of the fluid flow simulation. Owing to the nature
of the flow dynamics, which tends to smooth out the asperities of the wall, the information on the wall

orientation obtained in this way is observed to be of high quality.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last years, the lattice Boltzmann method has established
itself as a tool for numerical simulation of fluid flows [1,4-6]. One
major advantage of the method is the possibility to incorporate com-
plicated boundary conditions relatively easily. Since the method
works on a regular rectangular grid, no complex mesh generation
is necessary, and simulation setup for complicated geometries can
be automatized.

A simple approach to handle complex boundaries is to approx-
imate them by a staircase shape, and to use a bounce-back scheme
(see for instance [5,11]) to implement no-slip boundary conditions.
More accurate schemes exist, which resolve the actual boundary
location with sub-grid resolution, e.g. the method proposed by
Bouzidi et al. [3]. However, these schemes require non-local sur-
face smoothing processes to generate sub-grid boundary locations
from voxel data. This might be unacceptably expensive when sim-
ulating systems with time-dependent boundary locations, where
the smoothing process would have to be performed every time
the type of a voxel cell changes. An example is a boundary changed
by deposition and erosion of materials transported by the fluid. The
inevitable non-locality of the smoothing process is particularly
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unfavorable when running simulations on parallel computers.
We also point out that it would be interesting to compare the
bounce-back approach used in the present paper with a recently
published local boundary condition presented in [7].

Hence, the staircase plus bounce-back approach to the problem
of complicated boundaries is worth being considered due to its
technical advantages, if the desired accuracy allows it.

This work has been motivated by ongoing research on coupling
a lattice Boltzmann fluid solver with other models to simulate the
interaction of hemodynamics and physiological processes in artery
disease. It is now widely accepted that wall shear stress, i.e. the
shear stress exerted by the viscous fluid as it moves along the
artery walls, acts as a factor for physiological processes in the
artery wall tissue [10,2]. However, the influence is not yet quanti-
tatively precisely understood, thus wall shear stress measurements
would not need to be overly accurate as input to the other models.
One purpose of this paper is to investigate whether acceptably
accurate wall shear stress measurements can be obtained when
staircase approximation of boundaries and bounce-back scheme
are used.

Our second intent is to propose a method for purely local mea-
surements of the wall shear stress, allowing for easy and efficient
parallel implementation. To compute wall shear stress, the local
deviatoric stress tensor and the boundary normal vector must be
known. The former is locally available in the lattice Boltzmann
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method, on all nodes close to the boundary, without need for spa-
tial interpolations. Determination of the boundary normal, how-
ever, would customarily require a non-local procedure, because
the staircase-approximated boundary offers too little information.
We propose a technique to detect the boundary normal direction
locally, using information from the fluid field. The method works
well for the 2d and 3d benchmark cases tested. It should be men-
tioned that there exists another way of computing the wall normal
in a voxelized geometry, which consists in solving a Poisson equa-
tion within the fluid domain [9]. The advantage of the method in
the present paper is that it requires no additional equation to be
solved, and is therefore both simpler and more efficient to imple-
ment. The advantage of the approach presented in [9] is that, first
of all, it offers a means of computing the distance to the wall in a
general geometry, and second, it remains valid at a larger distance
from the wall, because the Poisson equation lacks a convective
term which could spoil the accuracy of the calculation.

2. Theoretical background
2.1. Lattice Boltzmann method

Lattice Boltzmann models simulate the dynamics of particle
distribution functions in a discretized phase-space.

The continuous space of positions is represented by the discrete
set of nodes of a regular grid, with equal spacings dx in all direc-
tions. Similarly, the space of velocities is represented by a discrete
set of g vectors c;, which are chosen such that the neighbors of a
lattice node X are found at positions X -+ ot c;, where §t is the dis-
crete time step of the model.

Lattice topology is therefore defined by the set of velocities, and
a d-dimensional lattice with q velocities is commonly referred to as
a DdQq lattice.

Given the discretization of position and velocity space, the state
of the simulation is completely defined by the values of g particle
distribution functions f; on each lattice node.

Hydrodynamic variables are defined as moments of the particle
distribution functions. In particular, density p and momentum pii
are computed as zeroth- and first-order moments:

p=Sf pi=Yfc. (1)

The relation of the second-order moment

n=> fcc (2)
i

to the hydrodynamic variables is explained below.

The dynamics of the particle distribution functions is governed
by the lattice Boltzmann equation. When written in a system of lat-
tice units where éx =1 and Jt = 1, it reads

fi@E+ct+1) =fi® )+ QR t). 3)

This can be formulated as two steps, reflecting its practical imple-
mentation. First, the collision operator €2 is applied locally on all lat-
tice nodes:

The post-collision distribution functions f are then propagated to
neighboring lattice nodes determined by the corresponding velocity
vectors:

[k +cit+1) =f/(X.0). (5)

The collision step is strictly local, while the streaming step involves
nearest neighbors.

In the commonly used lattice Boltzmann BGK model, the colli-
sion operator describes a relaxation of the particle distribution
functions towards a local equilibrium:

Qi = —o(fi — f(p, ). (6)

Here, w is a relaxation frequency, and the local equilibrium f** de-
pends only on p and .

By means of a multi-scale analysis, it can be shown that the lat-
tice Boltzmann BGK model recovers the Navier-Stokes equations
for a weakly compressible fluid (see for instance [5,6]). This analy-
sis is not performed in detail here.

The key idea is to expand the lattice Boltzmann equation into a
truncated Taylor series, and expand the particle distribution func-
tions into a power series of a small parameter ¢, often identified
with the Knudsen number of the flow:

fi :fim) + Ef,-(]) + O(€?). (7)

fO=p4 is the equilibrium distribution, while the higher-order
terms form the off-equilibrium part of the distribution. Off-equilib-
rium moments can be defined in analogy to Egs. (1) and (2), replac-
ing f; with f. It can be shown [6] that the tensor IT™) is related to
the strain rate tensor S:

2
nw = 2P ®)
w
where S is defined as:
1 - -
$=5((Vi) + (VD)) 9)

For practical purpose,fi“) is approximated as f; — f{* and Eq. (8) im-
plies that
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2.2. Bounce-back boundary conditions

To simulate flows in finite domains, one has to implement
boundary conditions at certain nodes. After the streaming step,
the values of some particle distribution functions are unknown at
boundary nodes, since the corresponding neighbor nodes lie out-
side the fluid. Implementing a boundary condition amounts to de-
fine the values of the unknown distribution functions in a manner
consistent with the dynamics of the model.

The easiest approach to implement a no-slip boundary condi-
tion is the so-called bounce-back scheme [5,11]. Particle distribu-
tions arriving at a boundary node from neighbor nodes inside the
fluid are reflected back in the direction they came from. The
scheme is obviously cheap and easy to implement. It fails, how-
ever, to resolve boundary locations at a scale smaller than the lat-
tice spacing éx, since the no-slip condition is always satisfied in the
middle of a link between two neighbor nodes.

2.3. Measuring wall shear stress and boundary normal

Wall shear stress is the force per unit area that is exerted by a
moving viscous fluid on a solid boundary. In the following, Greek
indexes denote spatial coordinates. Summation over any pair of
identical Greek indexes is assumed. The total stress tensor for
the fluid is

Ta/jZ*p-(so([;+Ga[;7 (11)

where p denotes pressure, d, is the Kronecker symbol and ¢, de-
notes the contribution from the viscous forces. The stress on some
boundary surface element with unit normal vector i is Tyng and
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