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Abstract The effect of gain-phase perturbations and mutual coupling significantly degrades the

performance of digital array radar (DAR). This paper investigates array calibration problems in

the scenario where the true locations of auxiliary sources deviate from nominal values but the angle

intervals are known. A practical algorithm is proposed to jointly calibrate gain-phase errors and

mutual coupling errors. Firstly, a simplified model of the distortion matrix is developed based on

its special structure in uniform linear array (ULA). Then the model is employed to derive the precise

locations of the auxiliary sources by one-dimension search. Finally, the least-squares estimation of

the distortion matrix is obtained. The algorithm has the potential of achieving considerable

improvement in calibration accuracy due to the reduction of unknown parameters. In addition,

the algorithm is feasible for practical applications, since it requires only one auxiliary source with

the help of rotation platforms. Simulation results demonstrate the validity, robustness and high per-

formance of the proposed algorithm. Experiments were carried out using an S-band DAR test-bed.

The results of measured data show that the proposed algorithm is practical and effective in appli-

cation.
� 2016 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

1. Introduction

Digital array radar (DAR) employs a full digital beam-
forming (DBF) architecture in the receiving and transmitting

system. It has the potential of forming multiple simultaneous

beams while providing high anti-interference capabilities. In
the last decade, DAR has attracted considerable attention
and has been widely used in space surveillance.1,2 Most array

signal processing algorithms, such as DBF and direction of
arrival (DOA), rely crucially on the assumption that the array
manifold is perfectly known. However, in actual systems, the

array manifold is inevitably affected by gain-phase perturba-
tions and mutual coupling effects. As a result, the performance
of DAR may be seriously degraded.3

Traditional algorithm for array calibration is to carry out

measurements using computational electromagnetic solvers,
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which has been applied in some actual radar systems.4,5 The
algorithm has the problem of time consuming and high
demands for testing environments. It may be impractical once

the array systems are in operation due to the complex electro-
magnetic environments.

In order to address the problem, a number of self-

calibration algorithms that make use of signal processing tech-
nology have been developed. Ref.6 estimates DOA parameters
and mutual coupling coefficients using the space alternating

generalized expectation maximization algorithm. In Ref.7,
the mutual coupling effects in the uniform linear array
(ULA) are inherently eliminated without any calibration
sources, but the algorithm requires some extended elements.

Refs.8–10 present a category of algorithms that can iteratively
estimate the array manifold errors and the DOAs of impinging
signals based on the subspace principle. These calibration algo-

rithms usually suffer from low accuracy, high computational
complexity and serious ambiguous problems.

Compared with self-calibration algorithms, active calibra-

tion algorithms use auxiliary sources to overcome suboptimal
convergence problems and have the potential to achieve better
calibration accuracy. The algorithm in Ref.11 calibrates mutual

coupling errors in an arbitrary array using several ideal instru-
mental elements. But it is difficult to find the ideal elements in
practice. A maximum likelihood approach is presented in
Refs.12,13 to estimate the unknown gain-phase, mutual cou-

pling as well as sensor positions. It has the drawbacks of high
computation, and the iterations may not be convergent under
some conditions. Refs.14–16 have proposed a category of eigen-

structure algorithm that treats gain-phase and mutual coupling
errors as a whole. The closed-form of the distortion matrix is
derived with the help of some time-disjoint auxiliary sources.

The algorithms have been implemented to improve the perfor-
mance of actual systems.17,18 But they do not consider about
the special structure of distortion matrix and have a strict

requirement pertaining to the number of auxiliary sources.
The algorithm in Ref.19 eliminates the repeated entries in the
distortion matrix of ULA to reduce the unknown parameters
and reaches a better accuracy than the algorithms in Refs.14,16.

However, the algorithm requires the precise knowledge of
locations of auxiliary sources, which may not be available in
some actual applications.

In practical situations, it may be difficult to access the pre-
cise directions of auxiliary sources. However, it is possible to
determine the angle intervals between them using additional

equipment, such as rotating platforms. This paper focuses on
the problems of joint calibration of gain-phase and mutual
coupling errors in the above scenario. The proposed algorithm
firstly develops a simplified form of the distortion matrix

according to its special structure. Then the relationship
between the distortion matrix and the DOAs of calibration
sources is derived. Finally one-dimension searching is

employed to obtain the angles and the least-square estimation
of distortion matrix is also provided. The proposed algorithm
achieves high accuracy and behaves robustly when the incident

angles of auxiliary sources are not known precisely.
The paper is organized as follows. In Section 2, the signal

model of ULA is demonstrated and the problem of array cal-

ibration is illustrated. In Section 3, the proposed algorithm for
array calibration in the presence of gain-phase errors
and mutual coupling errors is developed. Computer simula-
tions and experimental results of measured data are presented

and analyzed in Section 4, followed by conclusions in
Section 5.

2. Signal model and problem formulation

Consider a ULA consisting of N omnidirectional antenna ele-
ments with the space d between neighboring elements. There

are M narrowband signals s1ðtÞ; s2ðtÞ; . . . ; sMðtÞ located in the
far-field region. The signals imping on the ULA from different
directions of /1;/2; . . . ;/M, with respect to the normal line of

the ULA. The signals are incoherent with each other with a
wavelength of k. The additive noise is zero-mean, random pro-

cess with a variance of r2. The outputs of the array can be writ-
ten as

xðtÞ ¼ AsðtÞ þ nðtÞ ð1Þ
where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . . ; xNðtÞ�T, sðtÞ ¼ ½s1ðtÞ; s2ðtÞ; . . . ;
sMðtÞ�T, nðtÞ ¼ ½n1ðtÞ; n2ðtÞ; . . . ; nNðtÞ�T are the output vector,
signal vector and noise vector, respectively. A ¼
½að/1Þ; að/2Þ; . . . ; að/MÞ� is the ideal array manifold matrix,

where að/iÞ ¼ ½1; e�j2pd sin/i=k; . . . ; e�j2pðN�1Þd sin/i=k�T denotes the

ideal steering vector of the i th signal.
Taking gain-phase perturbations and mutual coupling

effects into consideration, the outputs can be modified as

xðtÞ ¼ CCAsðtÞ þ nðtÞ ð2Þ
where C ¼ diagðs1; s2; . . . ; sNÞ is a diagonal matrix and si
denotes gain-phase errors of the i th element. C 2 CN�N is

the mutual coupling matrix (MCM).
Since the structure of C is highly dependent on the physical

structure of the array, it can be considered as a banded sym-

metric Toeplitz matrix in the case of ULA.7 Indeed, mutual
coupling effects tend to be reciprocal to the distance between
elements and may be negligible for the elements separated by
a few wavelengths. Therefore, C may be expressed as

Cði; jÞ ¼ cji�jjþ1 for i; j ¼ 1; 2; . . . ;N

0 < jcPj < � � � < jc2j < jc1j ¼ 1

ci ¼ 0 for i > P

8><
>: ð3Þ

where ci is the mutual coupling coefficient between the first and
the ith element. P is the number of non-zero complex coeffi-
cients in the first row of the MCM.

The covariance matrix of array output vector is defined as

RxðtÞ ¼ EfxðtÞxHðtÞg ¼ CCARsðtÞA
HCHCH þ r2IN ð4Þ

where RsðtÞ ¼ EfsðtÞsHðtÞg is the covariance matrix of signals,

which is nonsingular when the signals are incoherent. IN is
the N�N identity matrix.

Performing eigen-decomposition on the output covariance

matrix, it can be written as

RsðtÞ ¼
XM
n¼1

1nene
H
n þ

XN
n¼Mþ1

1nene
H
n ¼ UsRsU

H
s þUnoRnoU

H
no ð5Þ

In Eq. (5), 11 P 12 P � � � P 1M are the M large eigenvalues

ofRxðtÞ, and 1Mþ1 ¼ 1Mþ2 ¼ � � � ¼ 1N ¼ r2 are small eigenvalues.

Rs ¼ diagð11; 12; . . . ; 1MÞ andRno ¼ diagð1Mþ1; 1Mþ2; . . . ; 1NÞ are
diagonal matrices. Us ¼ ½e1; e2; . . . ; eM� 2 CN�M is composed of
the eigenvectors corresponding to theM large eigenvalues, while

Uno ¼ ½eMþ1; eMþ2; . . . ; eN� 2 CN�ðN�MÞ contains the rest N�M

eigenvectors.
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