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Abstract The optimum loading for rotors has previously been found for hover, climb and wind

turbine conditions; but, up to now, no one has determined the optimum rotor loading in descent.

This could be an important design consideration for rotary-wing parachutes and low-speed des-

cents. In this paper, the optimal loading for a powered rotor in descent is found from momentum

theory based on a variational principle. This loading is compared with the optimal loading for a

rotor in hover or climb and with the Betz rotor loading (which is optimum for a lightly-loaded

rotor). Wake contraction for each of the various loadings is also presented.
� 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A problem of long-standing interest in rotor and propeller the-
ory has been determination of the optimum blade loading for a
rotor (i.e., the loading that gives minimum power for a given

thrust). Glauert’s second approximation to momentum theory
allows him to invoke a variational principal to obtain the opti-
mality condition for a rotor in hover.1 He also works out a

numerical approximation.1 Glauert’s minimum power is
demonstrated in Ref. 1 to be slightly lower than the power
due to the Betz loading.2 Ref. 3 demonstrates that Glauert’s
variational principle for hover can be cast as a cubic equation

in the unknown loading that has a compact, closed-form solu-

tion for the optimum blade loading in hover (as based on
momentum theory).

Ref. 4 offers a third approximation to Glauert’s momentum
equations. This third approximation gives the same optimality

condition as does Glauert’s second approximation, but it
allows development of wake contraction equations—valid in
hover and climb—to give downstream variables due to an arbi-

trary loading distribution. Applications are given in Ref. 4 for
the Betz loading distribution. Ref. 4 also demonstrates that, for
powered rotors in descent, the Betz loading always results in

some portions of the rotor being in either wind-turbine state
or vortex-ring state. Thus, solution of the contraction equa-
tions with a Betz distribution is not possible for descent. It is

further found in Ref. 4 that—beyond a critical descent rate—
no portion of a Betz-loaded rotor is in a working state (i.e.,
momentum theory breaks down over the entire span, and
one enters the vortex-ring region from the helicopter side).

This critical descent rate with the Betz distribution is shown
to be the same descent rate predicted by the vortex theory of
Wolkovitch.5
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Ref. 6 reveals that Glauert’s variational principal for opti-
mum loading can be extended to the case of general climb or
descent rate and leads to a quartic equation in the unknown

loading. Optimum solutions based on numerical solution of
the quartic are given in Ref. 6 for the cases of hover and
climb—but not for descent. In this paper, we solve this quartic

equation to find the optimum loading for a powered rotor in
descent and then compute the wake contraction due to this
loading. It will be shown that the optimum loading decreases

to zero as the rotor approaches the wind-turbine vortex-ring
boundary such that vortex-ring state is not encountered when
the rotor is optimized.

Glauert’s second approximation to momentum theory

implies that the induced flow at the rotor disk is parallel to
the local thrust vector4:

tan/ ¼ xx=2
u

¼ Uþ u

Xx� xx=2
ð1Þ

where / is the angle of inflow and thrust vector, x the wake
rotational speed, x the radial coordinate, u the induced flow
at rotor, U the climb rate and X the rotor singular speed. From

Eq. (1), u can be written in terms of x (or vice versa). The
incremental thrust dT and incremental power dP at a radial
station thus become:

dT ¼ 2pq X� x
2

� �
xx3

h i
dx ð2Þ

dP ¼ 2pq X� x
2

� �
Xxx4

� �
tan/dx

¼ 2pq Uþ uð ÞXxx3½ �dx ð3Þ

One can adjoin the thrust to the power with a Lagrange

multiplier K and obtain a variational statement for the mini-
mum induced power PI given a specified thrust.

PI ¼ P�UT

J ¼ PI � TK

dðJÞ ¼ 0

8><
>: ð4Þ

where J is the power functional and dð�Þ the variational oper-

ator. This variational statement for power results in a quartic
equation for the optimum angular velocity x at any radial
location—from which one can find the optimum u and the
optimum loading, dT=dr6:

1þ 3q� q2
� �

X� 2ð2þ 2q� q2Þ� �2 ð1� qÞ2X2 þ 4ðX� 1Þ�r2
h i

¼ ð1� qÞ2X2 þ 2�r2ð3X� 4Þ
h i2

ð5Þ
with

X ¼ 2X
x

q ¼ m0
gþm0

�r ¼ x
Rðgþm0Þ

8><
>: ð6Þ

where R is the rotor radius, q the normalized loading parame-
ter, q the nondimensional climb rate ðg ¼ U=ðXRÞÞ and m0 the
nondimensional Lagrange multiplier—which becomes the

Glauert loading parameter. Once Eq. (5) is solved for XðrÞ,
Eq. (1) can be used to find x, u; and the bound circulation
of the optimum loading C:

x ¼ x
X

C
2pXR2ðgþm0Þ2

¼ x�r2

�u ¼ u
XRðgþm0Þ ¼ � 1�q

2
þ 1�qð Þ2

4
þ 1� x

2

� �
x
2

� �
�r2

h i1=2

8>>><
>>>:

ð7Þ

Therefore, solution of the quartic Eq. (5) gives the entire
solution for an optimum rotor in climb, hover, or descent.

The optimum thrust and power are determined by Eqs. (2)
and (3).

dCT

d�r
¼ ðgþ m0Þ4ð2x� x2Þ�r3 ð8Þ

dCP

d�r
¼ ðgþ m0Þ5ð1� qþ �uÞðxÞ�r3 ð9Þ

where CT is the thrust coefficient ðT=ðqpR2X2R2ÞÞ and CP is

the power coefficient ðP=ðqpR2X3R3ÞÞ. Eqs (5)–(9) are suffi-
cient to describe the optimum rotor in hover, climb, or descent

under Glauert’s second approximation to momentum theory.
For hover, q ¼ 1; for climb, 0 < q < 1; and, for descent,
q > 1. Thus, the above equations give a normalized form of

the optimum rotor for all powered states.

2. Solution method

For hover ðg ¼ 0, q ¼ 1), Eq. (4) reduces to a cubic in X which
can be solved in closed form for the unknown X and, conse-
quently, for x. As shown in Ref. 3, that cubic has a compact

closed form solution.
where

x ¼ 6

5þ �r2 þ 2 1þ �r2ð Þ cos h=3ð Þ ð10Þ

h ¼ arccos
�r6 þ 3�r4 þ 3�r2 � 1

�r6 þ 4�r4 þ 3�r2 þ 1
ð11Þ

For rotors in climb or descent, one must deal with the entire

quartic in Eq. (5). Although there is a closed form solution to
the quartic, it is quite cumbersome. For computational pur-
poses, the most efficient approach is to solve Eq. (5) numeri-

cally for any given value of q and r. There are four
numerical roots for each case, but the physically meaningful
root is always the smallest, positive-real value for x.

It will be interesting to compare this optimum solution with
the Betz loading, the latter of which can be expressed as:

x ¼ 2qB
1þ �r2

ð12Þ

where qB is the Betz loading parameter. Later, we will make

this comparison. However, it should first be noted that, in
the Betz loading in Eq. (12), the loading parameter qB is based
on the Betz loading variable m0, qB ¼ m0=ðgþ m0Þ, where for
Betz the parameter m0 is equal to m1 (the induced flow for large

r). In contrast, the parameter m0 used to define q and r in Eqs.
(5) and (6) is only equal to the far-field induced flow for q ¼ 0
and q ¼ 1. The parameter m0 varies slightly from m1 in the

range 0 < q < 1 and varies substantially for q > 1:5. Later,
we will give the exact correspondence between the values of
qB and q for Betz and for the Glauert optimum.

Either the optimum or the Betz solution can be placed into
Eqs. (7)–(9) to obtain the loading and inflow. For small q, the
Glauert solution approaches the Betz solution. Note, also, that
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