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Abstract The attitude synchronization problem for multiple spacecraft with input constraints is

investigated in this paper. Two distributed control laws are presented and analyzed. First, by intro-

ducing bounded function, a distributed asymptotically stable control law is proposed. Such a con-

trol scheme can guarantee attitude synchronization and the control inputs of each spacecraft can be

a priori bounded regardless of the number of its neighbors. Then, based on graph theory, homoge-

neous method, and Lyapunov stability theory, a distributed finite-time control law is designed. Rig-

orous proof shows that attitude synchronization of multiple spacecraft can be achieved in finite

time, and the control scheme satisfies input saturation requirement. Finally, numerical simulations

are presented to demonstrate the effectiveness and feasibility of the proposed schemes.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

1. Introduction

The attitude synchronization problem for multiple spacecraft

or rigid bodies has attracted considerable attention in recent
years. In particular, the use of graph theory which was actively
applied in linear multi-agent systems with single and double

integrator dynamics produced many interesting results (see
Refs. 1–8). In these papers, attitude synchronization for multi-
ple spacecraft in the presence of modeling uncertainties, exter-

nal disturbance or communication delays can be guaranteed.

However, input saturation problem in the control of spacecraft
system has not been considered.

When control input saturation occurs, it can cause the sys-
tem dynamic’s poor performance and even the instability of
the system.9 In Ref. 10, three distributed control algorithms
were given for attitude synchronization, the first of which re-

duced the required control torque by introducing bounded
functions. In Refs. 11,12, the velocity-free attitude synchroniza-
tion control schemes were proposed for multiple spacecraft

which could bounded control input. Authors of Ref. 13 studied
the attitude synchronization problem of multiple rigid bodies
in the presence of communication delay, and showed that a

natural saturation was achieved. In those papers that account
for actuator saturation problems, the upper bound condition
of input of the proposed control schemes require the numbers

of neighbors of each spacecraft as a priori. However, this could
introduce difficulties in tuning the control gains especially in
the case that the maximum allowed input values are small
and the number of neighbors of each agent may be large. In
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Ref. 14, the synchronization problem of networked Lagrangian
systems was addressed and the control input was designed to
be a priori bounded independently from the information flow

in the network.
Most of the existing attitude synchronization control algo-

rithms for multiple spacecraft were asymptotic results, which

meant the attitude synchronization could not be achieved in fi-
nite time. For theoretical and practical reasons, finite-time
control algorithms are more desirable.15,16 Finite-time control

algorithms for a single spacecraft and multiple spacecraft have
been developed in Refs. 17–19 and Refs. 20–22, respectively. The
authors of Ref. 21 studied the finite-time attitude synchroniza-
tion problem for multiple spacecraft with considering external

disturbances. In Ref. 22, a dynamical synchronization error
constructed by the relative translation and rotation between
two spacecraft was first introduced and then the terminal slid-

ing mode control laws were designed such that synchronization
error can converge to the desired trajectory in finite time. To
the best of our knowledge, few results on the finite-time atti-

tude synchronization for multiple spacecraft with input con-
straints are available in the existing literature.

The main purpose of this paper is to study the attitude syn-

chronization problems for multiple spacecraft with input con-
straints. Briefly, the contributions of this paper are twofold.
First, two distributed control laws are proposed to achieve
attitude synchronization asymptotically and in finite time,

and particularly, the finite-time control law is the major result
of this part. Second, the aforementioned control algorithms al-
low to generate control inputs which are bounded as a priori.

Particularly, the upper bound of control input is independent
from the number of neighbors of each spacecraft.

The organization of this paper is presented as follows. Pre-

liminaries are introduced in Section 2. Section 3 first investi-
gates the asymptotical attitude synchronization, then studies
the finite-time attitude synchronization, for multiple spacecraft

with input constraints. In Section 4, simulation results are gi-
ven and discussed, followed by the conclusions in Section 5.

2. Preliminaries

2.1. Notations

Given a vector t = [t1 t2 t3]
T and a 2 R, define tanh(t) =

[tanh(t1) tanh(t2) tanh(t3)]
T,

R t
0
sds¼

R t1
0

sds
R t2
0

sds
R t3
0

sds
� �T

;

sigðtÞa¼ ½jt1jasgnðt1Þjt2jasgnðt2Þjt3jasgnðt3Þ�T, o(t) = [o(t1)
o(t2) o(t3)]

T, where o(Æ) denotes the infinitesimal of higher
order. Moreover, iti denotes the 2-norm of t.

2.2. Mathematical model of rigid spacecraft

The attitude kinematics and dynamics equations of the ith
spacecraft are given as

_ri ¼ HðriÞxi ð1Þ
Ji _xi þ x�i Jixi ¼ ui ð2Þ

where xi 2 R3 is the angular velocity of the ith spacecraft with

respect to the inertial frame expressed in the body frame of the
ith spacecraft; Ji 2 R3·3 and ui 2 R3 are the inertia tensor and
the control torque of the ith spacecraft, respectively. ri 2 R3 is
the modified Rodrigues parameters (MRP) denoting the

rotation from the body frame of the ith spacecraft to the iner-

tial frame. The notation xi
· denotes the cross-product operator

of xi. The matrix H(ri) is given by HðriÞ ¼
1
2

1�rT
i
ri

2
i3 þ r�i þ rir

T
i

� �
.

Remark 1. This particular MRP set goes singular when a
complete revolution is performed. As is shown in Ref. 23,
original MRP vector ri and its corresponding shadow coun-
terpart ri

* = �ri/(ri
Tri) could be used to represent spacecraft

attitude rotation to avoid the singularity problem. Eqs. (1) and
(2) can be expressed by Euler–Lagrange formulation as

MiðriÞ€ri þ Ciðri; _riÞ _ri ¼ u�i ð3Þ

where MiðriÞ¼FT
i JiFi;Ci ðri; _riÞ¼�FT

i JiFi
_HðriÞFi�FT

i ðJiFi _riÞ�
Fi; u

�
i ¼FT

i ui;Fi¼FðriÞ¼H�1ðriÞ.

Eq. (3) exhibits the following properties.

Property 1. Matrix MiðriÞ is symmetric and positive definite.

Property 2. Matrix _MiðriÞ � 2Ciðri; _riÞ is skew-symmetric.

2.3. Graph theory

Graph theory is applied to modelling the communication

topology among spacecraft. A graph G consists of a node set
V= {1,2, � � � ,n}, an edge set E ˝ V · V, and a weighted adja-
cency matrix A= [aij] 2 Rn·n with weight elements aij > 0 if
(j,i) 2 E, and aij = 0 if otherwise. An edge (i,j) denotes node

j can obtain information from node i. Here node i is a neighbor
of node j. Graph G is undirected if for any edge (i,j) 2 E, we
have (j,i) 2 E. A path from node i to node j is a sequence of

edges in a graph. The graph is called connected if there is a
path between every pair of nodes in a graph. Here nodes are
exemplified as a formation of spacecraft.

The Laplacian matrix L = [lij] 2 R
n·n is defined as

lii ¼
Pn

j¼1;j – iaij and lij = �aij, i „ j. For undirected graphs,
both A and L are symmetric.

2.4. Control objective

Our control objectives to be achieved in this paper are stated as
follows.

OBJ1: To design a distributed control law for system (1)
and (2) such that attitude synchronization can be achieved

asymptotically, i.e., ri fi rj, xi fi 0, as t fi1.
OBJ2: To design a distributed control law for system (1)
and (2) such that attitude synchronization can be achieved

in finite time, i.e., ri fi rj, xi fi 0 in finite time.

In this work we assume that all spacecraft are subject to
input saturation constraints such that iuii 6 uMi.

3. Main results

3.1. Control law design for OBJ1

In this section, we consider the attitude synchronization prob-
lem for multiple spacecraft with input constraints. The distrib-
uted control law for the ith spacecraft is proposed as
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