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Abstract This paper presents the novel use of the particle swarm optimization (PSO) to generate

the end-to-end trajectory for hypersonic reentry vehicles in a quite simple formulation. The velocity-

dependent bank angle profile is developed to reduce the search space of unknown parameters based

on the constrained PSO algorithm. The path constraints are enforced by setting the fitness function

to be infinite on condition that the particles violate the maximum allowable values. The PSO algo-

rithm also provides a much easier means to satisfy the terminal conditions by adding penalty terms

to the fitness function. Furthermore, the approximate reentry landing footprint is fast constructed

by incorporating an interpolation model into the standardized bank angle profiles. Numerical sim-

ulations demonstrate that the PSO method is a feasible and flexible tool to generate the end-to-end

trajectory and landing footprint for hypersonic reentry vehicles.
ª 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since human started the space era, global strike and space
transportation have spurred a great interest in hypersonic vehi-
cles for both civilian and military applications. The need for an

effective and reliable access to the space is promoting a rapid
development of hypersonic vehicles.1,2 The progress is wit-
nessed by the experimental success of NASA’s scramjet-
powered X-43A in 2004, US Air Force’s X-51 in 2010 and

DARPA’s Falcon HTV-2 in 2011. Although the X-51 went

through serious test failures after its first flight, the recent test
missions in 2013 succeeded in covering a large downrange

more than 230 nautical miles. In addition, the X-37B orbital
test vehicle also completed a successful flight test in 2012,
which lasts for 469 days and demonstrates the great capability

of the flight inspection and data analysis.
The reference trajectory is one of key components of the

reentry guidance for hypersonic vehicles. Therefore, the design

of reference trajectory plays an important role in steering a
safe and efficient flight. In general, the reference trajectory is
generated offline and preloaded on the hypersonic vehicle

before its launching. The vehicle enters the atmosphere of
the Earth at an altitude of about 100–120 km. The full trajec-
tory typically expands to the range of the terminal area at
about 20–30 km in altitude. It is a challenging task to design

the reference trajectory for hypersonic vehicles, since the reen-
try dynamics is highly nonlinear with limited control authority.
Besides, hypersonic vehicles must be subject to a great many
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path constraints in the complex environment such as the heat-
ing rate, dynamic pressure and aerodynamic load.3,4

In the current literature, three typical classes of approaches

have been proposed to design the constrained reentry trajec-
tory for hypersonic vehicles. One is to reduce the complexity
of the problem by using a reduced-order model. The evolved

acceleration guidance logic for entry (EAGLE) that includes
a trajectory planner to generate the atmospheric reentry trajec-
tory was presented in Refs.5–7. The design of both the feasible

and optimal trajectories is based on the drag planning tech-
nique for space shuttles. The second type of approaches
employs the quasi-equilibrium glide phenomenon for lifting
vehicles. Shen and Lu8,9 proposed the quasi-equilibrium glide

condition (QEGC) to generate the constrained reentry trajec-
tory for hypersonic vehicles. The nonlinear trajectory design
is decomposed into two sequential one-parameter search prob-

lems. The third class of approaches uses the direct trajectory
optimization technique, in which the reentry trajectory plan-
ning is based on pseudospectral methods (PSM).10–13 By

approximating the state and control at a set of discretization
points, the optimal control problem is transcribed into the
nonlinear programming (NLP) problem that can be solved

by using much more approaches.
In this paper, the particle swarm optimization (PSO) is used

to generate the end-to-end trajectory for hypersonic reentry
vehicles in a quite simple formulation. The contributions of

the paper are as follows: (1) a standardized bank angle profile
is developed to reduce the search space of unknown parame-
ters based on the PSO method; (2) two interpolation models

are incorporated into the control profiles for rapid construc-
tion of the reentry landing footprint.

2. Preliminaries

The PSO method is one of the swarm intelligence methods that
take the original inspiration from the natural phenomena. It

mimics the motion of the bird flocks while searching for a food
source. The idea of the PSO was first proposed by Eberhart
and Kennedy14 in 1995 and then modified by Shi and

Eberhart.15 As a population-based optimization tool, the
PSO has a main strength that each particle uses the experience
of the whole particles in the search space rather than only the
experience of its own. This feature of the PSO results in a fast

convergence.16

The initial set of the particles is randomly distributed in the
searching space. At a given iteration, each particle has a posi-

tion vector, a velocity vector and a vector of its previous best
position. Each particle in the swarm represents a possible
solution and corresponds to a specific value of the objective

(fitness) function. Both the position vectors and velocity
vectors are updated using the following information:

(1) The distance between its current position and the best

position so far of its own.
(2) The distance between its current position and the best

position so far in the group.

At the end of the iteration, the best particle in the swarm is
selected.17

In the current literature, two classes of particle swarms are
typically used including the local particle swarm and the global

particle swarm.18 The local particle swarm selects the collective
best position among the particles in a given neighborhood of
the particle itself, while the global particle swarm takes into

account the entire swarm. In this paper, we adopt the basic
version of the global particle swarm algorithm since it is well
suited for finding the optimal solution to trajectory optimiza-

tion problems. In addition, it is quite easy to define the search
space for the unknown parameters such that a simple
MATLAB or C/C++ code can be implemented and applied

to the trajectory optimization problem. In the following text,
the unconstrained and constrained PSO algorithms are
delineated.

2.1. Unconstrained PSO

The rationale of the unconstrained parameter optimization is

to determine the optimal unknown parameters such that the
objective function is minimized. Assume that {x1, x2, . . ., xn}
are the n unknown parameters that have their own bounds

in terms of

xi 2 ½ai; bi� ði ¼ 1; 2; . . . ; nÞ ð1Þ

where ai and bi are the lower and upper bounds of the ith
unknown parameter. The population in the PSO is represented
by a swarm of N particles. Then, each particle k is associated
with a position vector x(k) and a velocity vector v(k) as

xðkÞ ¼ ½x1ðkÞ; x2ðkÞ; . . . ; xnðkÞ�T ðk ¼ 1; 2; . . . ;NÞ ð2Þ

vðkÞ ¼ ½v1ðkÞ; v2ðkÞ; . . . ; vnðkÞ�T ðk ¼ 1; 2; . . . ;NÞ ð3Þ

where the terms x(k) and v(k) are referred to the search space
of the n unknown parameters without any physical meaning.
The elements of the two vectors are represented by xi(k) and
vi(k) ði ¼ 1; 2; . . . ; nÞ. According to the bounds of the n

unknown parameters, the related position and velocity compo-
nents are limited to

ai 6 xiðkÞ 6 bi

jviðkÞj 6 jai � bij

�
ði ¼ 1; 2; . . . ; n; k ¼ 1; 2; . . . ;NÞ ð4Þ

Each particle described by the terms x(k) and v(k) repre-

sents a possible solution to the unconstrained optimization
problem and results in a specific value of the objective func-
tion. The swarm evolution to the global optimal location is

determined by the position and velocity update. Suppose that
the PSO algorithm terminates at the maximum number of the
iterations NIT. In a generic iteration j ( j = 1, 2, . . ., NIT), the

fitness function is evaluated with the particle k. The best posi-
tion pbest

( j) (k) ever visited by the particle k is determined. Then,
determine the global best position gbest

( j) (k) ever visited by the
swarm such that the update of the velocity vector for each

particle k can be described as15

vð jþ1ÞðkÞ ¼ wvð jÞðkÞ þ c1r1ð0; 1Þ p
ð jÞ
bestðkÞ � xð jÞðkÞ

� �

þ c2r2ð0; 1Þ g
ð jÞ
bestðkÞ � xð jÞðkÞ

� �
ðk ¼ 1; 2; . . . ;NÞ

ð5Þ

where x(j)(k) and v(j)(k) are the position vector and velocity vec-
tor in each iteration; w is the inertial weight; c1 and c2 represent
the influences of the cognitive and social components, respec-
tively; r1 (0, 1) and r2 (0, 1) are independent random numbers
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