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1. Introduction

Abstract This paper describes a longitudinal parameter identification procedure for a small
unmanned aerial vehicle (UAV) through modified particle swam optimization (PSO). The proce-
dure is demonstrated using a small UAV equipped with only an micro-electro-mechanical systems
(MEMS) inertial measuring element and a global positioning system (GPS) receiver to provide test
information. A small UAV longitudinal parameter mathematical model is derived and the modified
method is proposed based on PSO with selective particle regeneration (SRPSO). Once modified
PSO is applied to the mathematical model, the simulation results show that the mathematical model
is correct, and aerodynamic parameters and coefficients of the propeller can be identified accurately.
Results are compared with those of PSO and SRPSO and the comparison shows that the proposed
method is more robust and faster than the other methods for the longitudinal parameter
identification of the small UAV. Some parameter identification results are affected slightly by noise,
but the identification results are very good overall. Eventually, experimental validation is employed
to test the proposed method, which demonstrates the usefulness of this method.

© 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

search and rescue. In recent years, there has been a tremendous
growth in research emphasizing control of UAVs either in iso-
lation or in teams, where aerodynamic parameters are the basis

Small unmanned aerial vehicles (UAVs) have the potential to
act as low-cost tools in a variety of both civilian and military
applications including traffic monitoring, border patrol and
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of their control system design.

At present, theoretical calculations and experimental meth-
ods are the main methodologies used to obtain aerodynamic
parameters for small UAVs. The theoretical calculation meth-
ods include the engineering calculation method' and the com-
putational fluid dynamics (CFD) method,” while the
experimental methods include the wind tunnel experiments™*
and the identification test method.” ’ The accuracy of the
parameters is lower when the engineering and CFD methods
are used, while the wind tunnel experiments usually require
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long cycles and therefore can become costly. By only relying
on the relationship between inputs and outputs, the identifica-
tion test method can identify UAV aerodynamic parameters
easily by selecting an appropriate identification method and
is quite suitable for small UAVs.

Aerodynamic parameter identification is the most fully
developed field in conventional aircraft system identification,
which has been successfully applied in aircraft and missiles.®
Suk et al.” used maximum likelihood estimation and extended
Kalman filters to identify the system and evaluate the stability
of a UAV in 2003. Tang and Shi'® used a numerically robust
least-squares estimator in the frequency domain to identify
the aircraft flutter modal parameters in 2008. Burchett'' used
an improved gradient-based method to estimate the aerody-
namic coefficients of a symmetric projectile from free flight
range data. Wu and Wang'? designed signals to excite the lon-
gitudinal motion of a fly-by-wire passenger airliner to identify
the aerodynamic parameters in 2013.

In conventional aircraft system identification, various test
technologies are needed for flight data. Generally, the tech-
nologies can be divided into external parameters measurement
and internal parameters measurement in two ways. The instan-
taneous position, trajectories, velocity and acceleration etc.
can be measured by external parameters measurement. These
data can then be compared with the data measured by airborne
systems to test the accuracy of the airborne systems. External
parameters measurement equipment includes photography,
radar measurement and laser measurement etc. Internal
parameters measurement equipment includes global position-
ing system (GPS) receiver, angular velocity gyroscope,
accelerometer, angular accelerometer, altimeter, airspeed
meter and so on.

Currently, for small UAVs, external parameters measure-
ment equipment is nonexistent and onboard test equipment
is limited in quantity because of space limitations and cost.
In this paper, the small UAVs studied only use an micro-
electro-mechanical systems (MEMS) inertial measurement ele-
ment and a GPS receiver to provide test information. The
problem with using such devices is that only a minimal amount
of information can be collected and the signal-to-noise ratio is
low. Therefore, aerodynamic parameter identification for small
UAVs is even more challenging.

Intelligent identification algorithms have been widely used
in the field of parameter identification with the development
of optimization theories.'*!> Particle swarm optimization
(PSO) is a new heuristic algorithm proposed by Kennedy
and Eberhart,'® and it has been successfully applied in many
research and application areas in recent years. Examples
include plans and scheduling,'” ' data clustering,”® power
flow analysis,”’ pattern recognition®> and layout design.”
In 2010, PSO was applied towards aerodynamic parameter
estimation to replace gradient-based optimization methods
by Zhang et al.** which proved that PSO was an effective
method to estimate aerodynamic parameters. However, it
was found that the convergence of PSO was slow when solv-
ing complex problems and the search may be occasionally
trapped in local minima. In order to improve the perfor-
mance of the algorithm, many attempts have been made.
PSO with selective particle regeneration (SRPSO) was pro-
posed by Tsai and Kao® in 2009. SRPSO was applied to
solve continuous multimodal function optimization, demon-
strating that SRPSO was better than PSO in many respects

and SRPSO was a more efficient, accurate and robust
method. SRPSO was later applied to solve data clustering
problems by Tsai and Kao.*

This paper proposes modified PSO (MPSO) to strengthen
the local optimization ability and solution convergence effi-
ciency, and then this approach is applied to parameters esti-
mation of a small UAV. Herein, we deduce longitudinal
aerodynamic parameters and a propeller dynamic mathemat-
ical model for a small UAV aimed at the limited in-flight test
data. Other related parameters of the mathematical model are
also identified based on MPSO. Simulation and an experi-
mental test are conducted to evaluate the whole method.

2. Algorithm

2.1. Particle swarm optimization (PSO)

PSO is inspired by the social behaviors observed in flocks of
birds and schools of fish. This intelligent algorithm has seen
rapid development in recent years. PSO is initialized with a
population of random solutions. Each particle represents a
candidate solution in the solution space. The position of an
individual particle is adjusted according to its own previous
searching experience. The best solution is determined by its
objective function value. The general procedure of PSO is as
follows:

(1) Initialization. The algorithm randomly generates an ini-
tial population of potential solutions, called particles,
and each particle is assigned a randomized velocity.

(2) Velocity and position update. The velocity update of a
particle is dynamically adjusted, subject to its own best
path history and those of its companions. Each particle
updates its velocity and position via Egs. (1) and (2).
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where Vi‘jd and x{° are respectively the particle’s previous
speed and position; V" and xjy™ are respectively the particle’s

new speed and position; w = 0.5 + g is the inertia weight coef-

ficient, with ¢ denoting a random number in the range of [0,1];
the cognition ¢; and the social parameter ¢, are acceleration
coefficients that are conventionally set to a fixed value between
0 and 2; py is the previous individual best position of the
particle; py4 is the current global best position.

(3) Compute the desired optimization fitness function.
Compare the fitness of each particle with its p,y, and if
the current is better, update p,q -

(4) Termination. Stop the algorithm if the stopping criterion
is met; otherwise, go to step (2).

The determination of a particle’s speed is based on the best
individual position and the knowledge of the swarm’s best tra-
jectory. The quantity p,y — x2¢ represents the cognitive knowl-
edge and p,y — x24 corresponds to the social knowledge, while
¢; and ¢, determine the effects of the cognitive and social

knowledge on the new velocity. A Dbalanced setting
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