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Abstract The equivalent linearization method (ELM) is modified to investigate the nonlinear flut-

ter system of an airfoil with a cubic damping. After obtaining the linearization quantity of the cubic

nonlinearity by the ELM, an equivalent system can be deduced and then investigated by linear flut-

ter analysis methods. Different from the routine procedures of the ELM, the frequency rather than

the amplitude of limit cycle oscillation (LCO) is chosen as an active increment to produce bifurca-

tion charts. Numerical examples show that this modification makes the ELM much more efficient.

Meanwhile, the LCOs obtained by the ELM are in good agreement with numerical solutions. The

nonlinear damping can delay the occurrence of secondary bifurcation. On the other hand, it has

marginal influence on bifurcation characteristics or LCOs.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

1. Introduction

Nonlinear airfoil flutter is a typical self-excited vibration with
rich nonlinear dynamical behaviors, such as limit cycle oscilla-

tion (LCO), bifurcation, and chaos.1–4 Since not all the nonlin-
ear features can be predicted by numerical methods, lots of
analytic or semi-analytic techniques have been applied on air-

foil models, for example, the harmonic balance method
(HBM),5,6 the incremental harmonic balance (IHB) method,7,8

the perturbation-incremental method,9 the homotopy analysis

method,10 and the equivalent linearization method (ELM),11–14

to mention a few.

The ELM has been widely applied to various nonlinear
vibration problems due to its simplicity and effectiveness. Fur-
thermore, the approximate solution of the equivalent linear

system has clear physical significance, which can provide us
with convenience to analyze nonlinear dynamical behaviors.
One of the most important procedures of the ELM is to derive
an equivalent linear system by linearizing considered nonlin-

earities. Usually, the average method or the KBM method is
employed for obtaining equivalent linear quantities.3 Based
on an equivalent linear system, methods for linear flutter anal-

ysis can be applied. For example, Liu and Zhao1 gained the
equivalent stiffness for cubic pitching nonlinearity by the aver-
age method. Later, Mickens11 proposed a method by combin-

ing equivalent linearization and the averaging technique. Lim
and Wu12 combined the ELM and the HBM for solving
strongly nonlinear vibration. Chen and Liu13 improved the

accuracy of equivalent stiffness by Lim’s method to analyze
the influences of quadratic pitching stiffness on a flutter sys-
tem. Most recently, the ELM was extended to flutter systems
with multiple nonlinearities, as suggested by Chen et al.14
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Structural nonlinearities such as cubic pitch/plunge stiff-
ness, freeplay, and hysteresis have been extensively investi-
gated in nonlinear airfoil flutter. Nonlinear damping,

however, has rarely been investigated. Note that nonlinear
damping may arise in hinge moment, damper, or solid fric-
tion.15–18 Nonlinear damping may also play a considerable

part in the behavior of nonlinear systems, especially strongly
coupled fluid–structure systems.15 Via an experiment for tube
arrays, Meskell and Fitzpatrick16 pointed out that the resulted

self-excited LCO amplitude was determined by nonlinear
damping while linear damping dominated the instability flut-
ter. After that, a method was suggested by Meskell17 for esti-
mating the damping parameters in lightly damped systems.

The influences of damping on limit cycles were also described
by Sinou and Jezequel.18 To the best of our knowledge, very
few investigations addressed the effect of nonlinear damping

on airfoil flutter.
This study aims at extending the ELM to investigate the

flutter system of an airfoil with structural nonlinear damping.

Special emphasis is put on the effectiveness of the ELM and
the influences of nonlinear damping on LCOs. The equivalent
linearization quantity of nonlinear damping is obtained by the

average method. The LCO frequency is chosen as an active
increment to produce bifurcation charts. Then, the LCOs
and bifurcation of the equivalent flutter system are analyzed
in detail. Numerical examples validate the accuracy of the ex-

tended ELM.

2. Equations of motions

Fig. 1 shows the physical model of a two-dimensional airfoil,
which oscillates in the pitch and plunge directions. The plunge
deflection is denoted by �h, positive if downward; the symbol a
denotes the pitch angle, positive if nose up. The length of the
mid-chord is b. The mass center (c.g.) resides at a distance
xab from the elastic axis (E). Besides, there is a distance ahb be-

tween the elastic axis and the mid-chord. The focal point F is
the aerodynamic center. Both of the distances are positive
when measured towards the trailing edge of the airfoil.

The coupled equations for the motions of the airfoil subject
to subsonic aerodynamics can be modeled in a non-dimen-
sional form as follows4,19

€nþxa€aþ21nx _n=Uþðx=UÞ2GðnÞ¼�CLðtÞ=plþPðtÞb=mU2

xa
€n=r2aþ€aþ21a _a=Uþð1=UÞ2MðaÞ¼ 2CMðtÞ=plr2aþQðtÞb=mU2r2a

(

ð1Þ

where n ¼ �h=b is the non-dimensional displacement, and the
prime denotes the differentiation with respect to the non-
dimensional time t, which is defined as t = Ut1/b (t1 is the real
time and U is a non-dimensional flow velocity given by

U= V/bxa with V as the flow speed); x is indicated by

x ¼ xn=xa, where xn and xa are the uncoupled natural fre-
quencies in the plunge and pitch modes, respectively; 1n and
1a are the damping ratios; G(n) and M(a) denote the nonlinear
terms of plunging and pitching, respectively; P(t) and Q(t) are
the externally applied force and moment; ra is the radius of
gyration about the elastic axis; m is the airfoil mass per unit
length while l is the airfoil-air mass ratio. CL(t) and CM(t) de-

note the coefficients for lifting and moment, respectively. For
an incompressible flow, CL(t) and CM(t) can be modeled by
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� �
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ð2Þ
where the Wagner function u(s) is given by the Jone’s approx-

imation uðtÞ ¼ 1� w1e
�e1t � w2e

�e2t, with the constants
w1 = 0.165, w2 = 0.335, e1 = 0.0455, and e2 ¼ 0:3.20

Due to the existence of the integral terms in Eq. (2), Eq. (1)

is a system of integro-differential equations. Studying the dy-
namic behavior of the system analytically can be rather cum-
bersome. Lee et al.21 introduced four new variables for
eliminating the integral terms

w1 ¼
Z t

0

e�e1ðt�rÞaðrÞdr; w2 ¼
Z t

0

e�e2ðt�rÞaðrÞdr

w3 ¼
Z t

0

e�e1ðt�rÞnðrÞdr; w4 ¼
Z t

0

e�e2ðt�rÞnðrÞdr

Thus, Eq. (1) can then be rewritten in a general form con-

taining only differential operators as

c0€nþ c1€aþ c2 _nþ c3 _aþ c4nþ c5aþ c6w1 þ c7w2

þc8w3 þ c9w4 þ c10GðnÞ ¼ fðtÞ

d0€nþ d1€aþ d2 _nþ d3 _aþ d4nþ d5aþ d6w1 þ d7w2 þ d8w3

þd9w4 þ d10MðaÞ ¼ gðtÞ

8>>>>><
>>>>>:

ð3Þ

where the coefficients c0, c1, � � �,c10 and d0, d1, � � �,d10 are given
in Ref. 19. Both f(t) and g(t) depend on initial conditions,

Wagner’s function, and the external forcing terms,

fðtÞ ¼ 2
l

1
2
� ah

� �
að0Þ þ nð0Þ

� �
ðw1e1e

�e1t þ w2e2e
�e2tÞ þ PðtÞb

mU2

gðtÞ ¼ � 1þ 2ah
2r2a

fðtÞ þ QðtÞ
mU2r2a

8>><
>>:

Generally, the identification of the nonlinearities on the air-

foil is very complicated. The nonlinear damping terms are usu-
ally assumed to be proportional to the cubic power of
velocity.22 In this study, we consider the system with cubic

damping as

GðnÞ ¼ knnþ en
_n3

MðaÞ ¼ kaaþ ea _a3

(
ð4Þ

where kn, ka, en and ea are all constants.
Introduce a variable vector X ¼ x1 x2 � � � x8½ �T with

x1 = a, x2 ¼ _a, x3 = n, x4 ¼ _n, x5 = w1, x6 = w2, x7 = w3Fig. 1 Physical model of a two-dimensional airfoil.
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