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a b s t r a c t 

In this paper, we investigate the mutual synchronization of oscillating pulse edges devel- 

oped in point-coupled transmission lines periodically loaded with tunnel diodes (TDs). 

When supplied with an appropriate voltage at the end of a TD line, a pulse edge ex- 

hibits a spatially extended limit-cycle oscillation on the line. In this study, the properties 

of this mutual synchronization of edge oscillation established in two coupled TD lines are 

discussed. We examine the mutual synchronization using phase sensitivity calculated by 

applying phase-reduction scheme to the transmission equation of a TD line. The phase dif- 

ference between the synchronized edges and oscillation frequency is calculated depending 

on the coupling cell. We then validate the reduced model via time-domain calculations of 

edge oscillations. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Attracting attention in both science and engineering, the nonlinear wave properties in transmission lines periodically 

loaded with tunnel diodes (TDs), referred to as TD lines for brevity, are the focus of our current study. Because a TD line 

adequately simulates the nerve axon on the basis of the Hodgkin–Huxley model, it is used in the field of physiology to 

characterize electrical pulses propagating across a nerve axon [1,2] . Use of a TD line has also been investigated in high-speed 

electronics. For high frequency usage, each TD is connected by a series inductor. Setting the appropriate biasing voltage and 

current for the line generates a steep incident pulse edge by the loaded TDs [3–5] . Several schemes employing TD lines to 

generate short electrical pulses have been reported to date [6,7] . 

In addition, it has been observed that a voltage edge repeatedly turns around halfway on a TD line with an appropriate 

boundary condition [8] . Here, the edge oscillation is shown to be a limit cycle that exhibits several synchronization phe- 

nomena. Recently, we investigated the external synchronization of the oscillating edge(s) on a TD line using numerical and 

experimental methods [9] . The predictions made by the phase-evolution equation were validated by the experimental ob- 

servations, which made it natural to consider the two edge oscillations that are mutually synchronized. Because the edge 

oscillations develop on a spatially extended platform, synchronized properties such as phase difference and frequency shifts 

may depend on the cell at which the TD lines couple. We consider point-coupled TD lines, i.e., the two TD lines coupled via 

a single cell, as one of the most elemental systems exhibiting mutual synchronization. 
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The main motivation to consider the mutually synchronized edge oscillations is their potential to yield low-noise oscil- 

lators with controlled phases. For the oscillators used in phased-array systems, their phases have to be precisely controlled. 

We will see that the phase difference between two edge oscillations can be controlled by the positions of the connecting 

cells of supporting TD lines. In addition, the edge oscillations are expected to exhibit significantly low-phase-noise property 

among various TD line networks including loopback topology. Furthermore, the oscillation frequency of an edge oscilla- 

tion is controlled via the applied voltage. These distinguishing properties of an edge oscillation lead to the development 

of aforementioned high-performance oscillators. On the other hand, it is equally important to examine the contribution of 

oscillator’s internal degrees of freedom to the establishment of synchronization. It has been shown that the weakly coupled 

oscillators are well characterized by the phase model, which represents each oscillator by the unique phase variable. As 

the coupling strength increases, the oscillation amplitude starts to contribute to the synchronized dynamics like oscillation 

quenching. It is worthwhile to investigate how the large degrees of freedom consisting of an edge oscillation contribute to 

the establishment of synchronization under the influences of strong couplings. The present study secures the baseline to 

discuss the synchronization properties beyond the phase model. 

The phase difference between the two edge oscillations and the frequency shift owing to the mutual synchronization 

are then the primary properties to be characterized; we examined their dependence on the position of the connected cells. 

From the phase-reduction scheme described in [10,11] , we obtained phase sensitivity from the transmission equations of a 

TD line. In the reduced model, a limit cycle is identified only through phase sensitivity, which quantifies how the limit cycle’s 

phase responds to perturbations. For comparison, we used another more direct and cumbersome approach that numerically 

solves the transmission equations of TD lines in the time domain. The phase difference and frequency shift both coincided 

well with the corresponding values obtained via the phase-reduction scheme. Furthermore, in contrast to the time-domain 

calculations, the phase-reduction scheme required time-consuming calculations only for numerically estimating the phase 

sensitivity. Overall, the validity of the phase-reduction scheme results in the cost-effective characterization of the properties 

of mutual synchronization established between two TD lines with arbitrary couplings. Due to this convenience, the phase 

reduction scheme gives the unique method to examine exhaustively various topologies of TD line. In addition, the phase 

sensitivity is also proved to quantify the phase noise [13] . 

In addition to this introductory section, our paper is organized as follows. In Section 2 , we review the fundamental 

properties of edge oscillation in a TD line including the device, structure, and dynamics of edge oscillation. In Section 3 , 

we discuss the numerical evaluation in the time domain of the mutual synchronization observed in edge oscillations on 

two point-coupled TD lines, whose bifurcational structure is also described. Predictions of the phase-reduction scheme are 

described in Section 4 , as are our comparison with the time-domain calculations. Finally, we provide our conclusions and 

offer directions for future work in Section 5 . 

2. Fundamental properties of edge oscillations in a TD line 

Fig. 1 (a) shows the two cells of a TD line with L , R , C , and I D representing series inductance, series resistance, shunt 

capacitance, and current of the shunt TD of the unit cell, respectively. The current–voltage relationship of a TD that we used 

for the calculations is shown in Fig. 1 (b). Here, there are two characteristic voltages, namely, the peak and valley voltages, 

which are denoted by V p and V v , respectively. The TDs exhibit negative differential resistance at voltages between V p and 

V v . Any type of TD, including Esaki and resonant tunneling diodes, can be generally used as a platform to develop edge 

oscillation, which is the focus of our current study. 

Fig. 2 illustrates typical edge oscillation behavior, in which the spatial position on the TD line is shown horizontally, 

whereas the voltage is shown vertically. Fig. 2 (a) shows the behavior of line voltage that moves to the far end. Because 

of losses and leakage, the edge is gradually attenuated; it nearly disappears, as shown in Fig. 2 (b). At this stage, a stable 

traveling front develops and starts propagating back to the near end as shown in Fig. 2 (c). Once the voltage edge returns 

to the input end, it is reflected again to propagate from the input end as shown in Fig. 2 (d). The voltage edge repeats this 

process, thus oscillating on the line. This edge oscillation has noteworthy properties such as voltage-controlled oscillation 

frequency and spatial extendedness. In what follows, we refer to from and to the input end as forward and backward direc- 

tions, respectively. Here, the velocity of the voltage edge does not significantly depend on the input DC voltage. Moreover, 

the edge propagates further, thus increasing the turnaround time for greater input DC voltages. Therefore, the frequency of 

the edge oscillation decreases as the input DC voltage increases. 

3. Mutual synchronization in point-coupled TD lines 

Fig. 3 shows the point-coupled TD lines that we investigated. For brevity, the upper and lower TD lines are called lines 

1 and 2, respectively. Given this, the M 1 th cell of line 1 is coupled to the M 2 th cell of line 2 through R c . The total cell 

number for lines 1 and 2 is commonly set to N . Initially, all line voltages are set to zero. Then, the input end is connected 

to a voltage source with negligible internal resistance that outputs the DC voltage of A i , with the other end short-circuited 

for line i ( i = 1, 2). The n th voltage and current on lines i ( i = 1, 2) are denoted as I i , n and V i , n , respectively. Moreover, 

we define 2 N + 1 variables X i , n ( n = 1, . . . , 2 N + 1) as X i,n = I i,n for n = 1, . . . , N + 1 and X i,N+1+ n = V i,n for n = 1, . . . , 

N . Additionally, L i , n ( i = 1, 2, n = 1 . . . N + 1) and C i , n ( i = 1, 2, n = 1 . . . N) represent the line inductance and capacitance, 

respectively, at the n th cell of line i to incorporate the variations of reactance values. Then, the transmission equations of 
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