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Abstract Advanced engineering systems, like aircraft, are defined by tens or even hundreds of

design variables. Building an accurate surrogate model for use in such high-dimensional optimiza-

tion problems is a difficult task owing to the curse of dimensionality. This paper presents a new

algorithm to reduce the size of a design space to a smaller region of interest allowing a more accu-

rate surrogate model to be generated. The framework requires a set of models of different physical

or numerical fidelities. The low-fidelity (LF) model provides physics-based approximation of the

high-fidelity (HF) model at a fraction of the computational cost. It is also instrumental in identify-

ing the small region of interest in the design space that encloses the high-fidelity optimum. A sur-

rogate model is then constructed to match the low-fidelity model to the high-fidelity model in the

identified region of interest. The optimization process is managed by an update strategy to prevent

convergence to false optima. The algorithm is applied on mathematical problems and a two-dimen-

sional aerodynamic shape optimization problem in a variable-fidelity context. Results obtained are

in excellent agreement with high-fidelity results, even with lower-fidelity flow solvers, while showing

up to 39% time savings.
ª 2013 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

1. Introduction

With advances in computational fluid dynamics (CFD) and
computer hardware, CFD has now become an integral part

of the aircraft design process. The high-fidelity (HF) aerody-
namic data it provides has contributed to cutting aerodynamic
design cost and time scales by reducing the number of required

wind tunnel tests.1 However, major benefits can be achieved if
CFD is included in the conceptual design phase, where as
many as tens of thousands of analyses must be performed,

and global optimization can play a key role. Given the high
cost of CFD and optimization, a prominent area of research
today is to find ways to reduce the computational time while
retaining the high fidelity of the analysis. In the area of aero-

dynamic optimization, the variable-fidelity (VF) (also called
multi-fidelity) method has quickly grown in popularity.2–22

Variable-fidelity and other model management methods

have been developed to solve optimization problems that in-
volve simulations with high computational expense.9,11 In
many engineering design problems, differing levels of fidelity

can model the system of interest. Higher-fidelity models typi-
cally incorporate more detailed physics and are computation-
ally expensive to evaluate than lower-fidelity (LF) models.

Lower-fidelity models are typically much cheaper to evaluate,
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but designs produced by using these models neglect important
physical effects included in more expensive higher-fidelity
models. In aircraft design, the Navier–Stokes and Euler equa-

tions are examples of two computational models with different
fidelities, where the latter is obtained by removing the viscosity
terms from the Navier–Stokes equations.

Variable-fidelity optimization (VFO) has emerged as an
attractive method of performing both high-speed and high-
fidelity optimization and the past three decades have seen

rapid increase in its development and usage.2–23 These algo-
rithms attempt to leverage information from computationally
inexpensive low-fidelity models to reduce the time required
to converge to the optimum of high-fidelity functions. This is

usually accomplished by using a low-fidelity solver plus a cor-
rection term – the difference between high-fidelity and low-
fidelity solvers – modeled by a surrogate model calibrated at

selected sample points in the design space.16 A variety of meth-
ods have been used for generating these surrogate models
including Kriging, 4,7–9,11,14,15,18,24–30 radial basis functions

(RBFs),28,31 neural networks,4,9,15,31,32 and support vector
regression (SVR).33,34 Insightful reviews of surrogate models
and variable-fidelity methods have appeared in the

literature.11,19,23,24,35

Advanced engineering systems, like aircraft, are defined by
tens or even hundreds of design variables. Building an accurate
surrogate model for use in such high-dimensional optimization

problems is a difficult task. In essence, a surrogate model is a
data-fit and is only accurate in the region where it is adequately
trained. Intelligent techniques of generating sampling plans

(also called design of experiments or DoE) – a sparse set of
points where the surrogate will be trained – exist to achieve
uniform coverage of the design space. However, if the problem

being dealt with has many dimensions, the number of training
points required for reasonable uniform coverage of the design
space rises exponentially – the so-called curse of dimensional-

ity.23,36 A surrogate-based optimizer may converge to a local
optimum, or worse a false optimum, due to inaccuracies of
the surrogate model.25,37

While it is easy to control the range of validity of the surro-

gate model in gradient-based optimization algorithms by using
ad hoc move limits or a trust-region framework, it is not
straightforward in global optimization schemes like genetic

algorithms (GAs).38 This issue has been addressed by other
researchers in the past. Ratle39 uses a heuristic convergence cri-
terion to determine when the approximate model must be up-

dated. The basic idea is that the convergence of the search
process should be stable and therefore, the change of the best
solution should not be larger than a user-defined value. This,
however, relies on the assumption that the first sets of data

points are weakly correlated with the global optimum of the
original problem, which is not necessarily true for high-
dimensional systems. Others perform on-line learning of the

approximate model based on a prescribed generation delay.2,40

Another concept of evolution control is applied by Jin et al.37

where the surrogate model and the original fitness function are

both used in tandem during the evolutionary process based on
a fixed32 or adaptive17,37,41 criterion.

One way to solve this problem is to limit the range of design

variables so that the shape being modeled is sufficiently simple
to be approximated from very sparse data.36 This begs the
question: what should these limits be? This paper presents a
technique of intelligently narrowing down a search space to

a smaller region of interest using low-fidelity methods. The sur-
rogate model developed in this small region is found to be very
accurate. It is then combined with several update strategies

and used in a variable-fidelity optimization context to predict
the global optimum in a larger design space. The method is
demonstrated on a two-dimensional (2D) aerodynamic design

optimization problem with good accuracy.
The remainder of the paper is organized as follows.

Section 2 describes the design space reduction (DSR) technique.

Update strategies for the surrogate model are discussed in Sec-
tion 3. Optimization of mathematical functions is performed
in Section 4, and a more complex 2D aerodynamic optimization
problem is introduced in Section 5 along with the analytical

methods and tools used. Airfoil optimization results are pre-
sented in Section 6 followed by conclusions in Section 7.

2. Design space reduction

For a surrogate model to be useful in an optimization context,
it is important that the surrogate model is accurate at the se-

quence of iterates generated by the search algorithm as it con-
verges towards the true optimum. How the model performs at
other points in the parameter space is of no concern in this spe-

cific context.38 This observation provides the pretext for devel-
opment of the design space reduction technique. In previous
research, the authors have pointed out the importance of

selecting a low-fidelity solver capable of predicting the aerody-
namic behavior that is consistent with the high-fidelity
solver.2,42 It is reasoned that such a low-fidelity solver will con-
verge towards the region of the high-fidelity optimum – the

desired region of interest. This region can be determined by
examining the search trajectory of the low-fidelity solver. An
accurate surrogate can be created in this small region of inter-

est and thereafter be used for variable-fidelity optimization.
The design space reduction algorithm proceeds as follows:

(1) the optimization is initially performed using a genetic algo-

rithm (GA) coupled to a low-fidelity solver in a large design
space; (2) the search trajectory is analyzed to identify the re-
duced design space; (3) this is followed by another optimiza-

tion using the low-fidelity solver and the surrogate model in
a variable-fidelity context. The flowchart of the complete var-
iable-fidelity framework with design space reduction (DSR–
VFO) is shown in Fig. 1.

Fig. 2 shows a sample design space from a low-fidelity opti-
mization run on a 10-variable problem. Since a GA progres-
sively converges towards the optimum, only the population

members for the last five generations are analyzed. Three
methods are considered for selecting a small region for gener-
ating the surrogate model:

(1) The extreme minimum and maximum values of each
design variable.

(2) A normal distribution fit to the design variables with

95% confidence levels as the bounds.
(3) A 5% region around the low-fidelity optimum point.

The upper and lower bounds are defined by a region that

forms a 5% locus around this point.

Fig. 2 shows the design space produced by the above meth-

ods. The location of the high-fidelity optimum is also shown
for reference. All methods produce regions smaller than the

842 M.K. Zahir, Z. Gao



Download English Version:

https://daneshyari.com/en/article/757862

Download Persian Version:

https://daneshyari.com/article/757862

Daneshyari.com

https://daneshyari.com/en/article/757862
https://daneshyari.com/article/757862
https://daneshyari.com

