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a b s t r a c t

Consider diseases transmitted through personal contacts, for which recovery usually confers

complete and long-lasting immunity, like some of the common viral infections of childhood.

Here, an epidemic model based on differential equations is proposed to evaluate the influ-

ence of the recovered (immune) individuals on the spread of such diseases. Indeed, immune

individuals can affect the infection rate of susceptible individuals and the recovery rate of sick

individuals. The predictive ability of the proposed model is assessed from records concerning

the incidence of varicella in three European countries, in a pre-vaccination era.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider infectious diseases that propagate through social contacts. Specifically, think about typical viral infections of child-

hood, like varicella (chickenpox). Recovery from this disease commonly confers full and sustained immunity [5,8,27].

Epidemic models on varicella do not usually include the influence of the recovered (immune) individuals on the spread of this

disease [4,7,12,16,20,21]. Such an influence, however, should be taken into account. Habitually, immune individuals take care of

sick children, reducing the convalescence period. Immune individuals also act as catalysts by facilitating the interaction among

susceptible and infective children in clubs, parks, schools. In fact, children generally go out their homes only accompanied by

immune adults. Thus, recovered individuals can increase the contagion rate, which is harmful to the host population; but they

can also increase the recovery rate, which is beneficial.

Here, these opposite effects are taken into consideration in an epidemic SIR model written in terms of ordinary differential

equations. We did not find in the literature any epidemic model about any contagious disease with this feature. The model

proposed in this work allows the existence of multiple stable equilibria. The predictions of this model are evaluated by comparing

them to real data related to the annual incidence rate of varicella in Belgium [22], Germany [25], and Italy [6], prior to varicella

vaccination [15].

This manuscript on the influence of recovered individuals in infection propagation is organized as follows: in Section 2, the

proposed model is analyzed; in Section 3, numerical simulations performed with hypothetical and real parameter values are

presented; in Section 4, the main results are discussed.
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2. Model and analytical results

SIR models have been successfully employed in epidemiological studies [1,3,9–11]. This work is based on the following SIR

model:

dS(t)

dt
= f1 = −aS(t)I(t)[1 + q1R(t)] + cI(t) + eR(t) (1)

dI(t)

dt
= f2 = aS(t)I(t)[1 + q1R(t)] − bI(t)(1 + q2R(t)) − cI(t) (2)

dR(t)

dt
= f3 = bI(t)(1 + q2R(t)) − eR(t). (3)

The variables S(t), I(t), and R(t) denote the numbers of susceptible, infective, and recovered individuals at the time t, respec-

tively. It is supposed that these three kinds of individuals are homogeneously distributed over the space [1,23].

The six parameters a, b, c, e, q1, and q2 are positive numbers: a is the infection rate constant, b is the recovery rate constant,

c is the rate constant of death of I-individuals, e is the rate constant of death of R-individuals, q1 is the constant expressing the

impact of R-individuals on the contagion of S-individuals, q2 is the constant denoting the influence of R-individuals on the cure of

I-individuals. The analytical form of the terms containing q1 and q2 shows a linear variation with R(t), because this is the simplest

way of representing the effects of recovered people on a disease spreading. Thus, it becomes the natural choice for such terms in

this early investigation.

In this model, it is assumed that deaths of I and R-individuals are balanced by births of S-individuals; that is, when I and

R-individuals die, S-individuals replace them. Hence, dS(t)/dt + dI(t)/dt + dR(t)/dt = 0; consequently, S(t) + I(t) + R(t) ≡ N, in

which N is the total number of individuals. Therefore, the size of the population remains constant and equal to N. Note that the

terms involving the parameters c and e in Eq. (1) represent the birth rate. Note also that R(t) = N − S(t) − I(t); therefore, this

model is a second-order autonomous dynamical system. Hence, the attractors can be either steady states or limit cycles [2,14].

A steady state is a stationary solution. It corresponds to an equilibrium point (S∗, I∗) in the state space S × I, in which S∗ and

I∗ are constants satisfying f1(S∗, I∗) = 0 and f2(S∗, I∗) = 0 for any time t (obviously, R∗ = N − S∗ − I∗). The local stability of an

equilibrium point (S∗, I∗) can be inferred from the eigenvalues of the Jacobian matrix obtained from the system of Eqs. (1) and

(2) linearized around such a point [2,14]. Hartman–Grobman theorem states that (S∗, I∗) is locally asymptotically stable if both

eigenvalues have negative real parts [2,14]. For this second-order system, the eigenvalues λ1, 2 are the roots of the polynomial λ2 −
Tλ + � = 0, in which T = [∂ f1/∂S + ∂ f2/∂ I](S,I)=(S∗,I∗) is the trace and � = [(∂ f1/∂S)(∂ f2/∂ I) − (∂ f1/∂ I)(∂ f2/∂S)](S,I)=(S∗,I∗) is

the determinant of the Jacobian matrix computed at (S∗, I∗). The eigenvalues λ1, 2 have negative real parts if T < 0 and � > 0.

A limit cycle is a periodic solution. It is represented by a closed and isolated trajectory in the state space S × I. By varying the

parameter values, a limit cycle enclosing an equilibrium point can appear via Hopf bifurcation [2,14]. If T = 0 and � > 0 for an

equilibrium point, then a Hopf bifurcation can occur, and a limit cycle with stability opposite to this equilibrium point emerges

in the state space.

For the proposed model, the stationary solution given by (S∗
f ree

, I∗
f ree

) = (N, 0) corresponds to the disease-free steady-state

(that is, the steady state without infective individuals). It exists for any values of q1 and q2. For this solution, T = (R0 − 1)/(b +
c) − e and � = e(1 − R0)/(b + c), with R0 ≡ aN/(b + c). Therefore, the disease-free steady-state is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1. The (bifurcation) parameter R0 is usually known as basic reproduction number [1,18].

The existence and the stability of endemic steady-states (S∗
ende

, I∗
ende

) (that is, steady states with infective individuals) depend

on q1 and q2. The scenario with q1 = 0 and q2 = 0 was already analyzed by Schimit and Monteiro [19]. In this case, there is only

one endemic steady-state given by:

(S∗
ende, I∗ende) =

(
N

R0

,
eN

e + b

(
1 − 1

R0

))
(4)

which is locally asymptotically stable if R0 > 1 and unstable if R0 < 1. Observe that the system experiences a transcritical bifur-

cation in R0 = 1, because the steady states (S∗
f ree

, I∗
f ree

) and (S∗
ende

, I∗
ende

) of opposite stabilities exchange their stabilities when R0

is varied around 1 [19].

Here, the case q1 > 0 and q2 = 0 is first investigated; then, it is taken q1 = 0 and q2 > 0; and, finally, it is considered q1 > 0

and q2 > 0.

Case 1: q1 > 0 and q2 = 0 (that is, R-individuals only affect the propagation rate). Endemic steady-states are obtained from:

a0(I∗ende)
2 + a1I∗ende + a2 = 0 (5)

with a0 = q1b(b + e)/e2, a1 = 1 + b(1 − q1N)/e, a2 = N(1 − R0)/R0, and:

S∗
ende = N −

(
1 + b

e

)
I∗ende. (6)

The roots of Eq. (5) are I∗
ende,1

= (−a1 + ρ)/(2a0) and I∗
ende,2

= (−a1 − ρ)/(2a0), with ρ =
√

a2
1

− 4a0a2. Only positive and real

roots are biologically meaningful. Observe that a0 > 0. If a2 < 0 (that is, R0 > 1), then the only positive root is I∗
ende,1

; if a2 > 0,
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