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tric field. Calculations are performed assuming a quantum mechanical treatment for the
electronic transport and a classical Hamiltonian model for the lattice vibrations. We report
numerical evidence of the existence of a soliton-electron pair, even when the electric field
PACS: is turned on, and we offer a description of how the existence of such a phase depends on
63.50.+x the magnitude of the electric field and the electron-phonon interaction.

g;;é:gl © 2016 Elsevier B.V. All rights reserved.

Keywords:
Electric field
Soliton
Morse lattice

1. Introduction

The issue concerning the time-dependent behavior of an initially localized electronic wave-packet has a direct connection
with the electrical properties of materials [1-6]. The seminal works of Anderson and other co-workers have shown that the
presence of disorder is a key factor governing the extension of the wave function [7-10]. They demonstrated that in a
disordered system with dimension d < 2, all eigenstates become localized in a finite fraction of the system, even in the case
of weak disorder. The Anderson localization theory has been developed for electrons. However, such a prediction is valid
for any field described by a wave equation. Examples for electromagnetic fields [11], water waves [12] and Bose-Einstein
Condensates (BEC) [13] have been reported in the literature. Within the context of BEC, we emphasize that its dynamics
is well described by the Gross-Pitaevskii equation [14], and the nonlinearity present in this equation reveals exciting new
physical properties [15-17].

Nonlinearity can also be found in electronic systems. Some authors [18] have shown that the interaction between elec-
trons and optical phonons is well described by a nonlinear Schrédinger equation. An interesting nonlinear phenomenon,
called self trapping (ST), occurs when the nonlinearity strength exceeds the magnitude of the electronic bandwidth [19-26].
When ST takes place, an initially localized wave-packet does not spread over the system, remaining localized around its
initial position. In a wider sense, transport properties in nonlinear lattices have attracted a great deal of interest among
the solid state community, as well as within the nonlinear science field [27-74]. Davydov [55-59] came up with the idea
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that the electron-lattice nonlinear term can promote charge transport. That mechanism is a consequence of the nonlin-
ear interaction between a linear electronic model and a linear lattice, whose dynamics are described by a soliton-bearing
equation.

Moreover, in [60-71], Velarde and co-workers have shown the existence of a polaron-soliton “quasi-particle” in nonlin-
ear lattices, and also its importance to the charge carry. The coupling of self-trapped states (polaron states) with the lattice
solitons has been generally termed as a solectron [60-71]. We highlight that solectron theory represents a generalization of
the original polaron concept that is able to mediate non-Ohmic supersonic electric conduction [68]. The electronic trans-
port mediated by nonlinear effects has been investigated in several two-dimensional anharmonic lattices, particularly in
a square lattice similar to the cuprate lattice [71]. They found numerical evidence of electron-soliton transfer along the
crystallographic axis.

McNeil and co-workers in ref. [75] provided an interesting experimental advance in electron transport. They were able to
move a single electron along a wire, batting it back and forth, like the ball in a ping-pong game. The possibility of using this
“controlled motion” within the framework of quantum computing, for example, to move a quantum ‘bit’ between two far
places, was noted. This experiment consisted of trapping a single electron in a quantum dot and moving this electron around
a channel using a surface acoustic wave (SAW). The authors obtained up to 60 shots with a good quality. The possibility of
using SAW to move electrons and to construct quantum bits has attracted the attention of the scientific community [76-82].

It is well known that, in the absence of nonlinearity, a static electric field applied parallel to a periodic lattice promotes
the dynamic localization of a given initial wave-packet. Furthermore, the presence of a static electric field gives rise to an
oscillatory behavior of the electron wave packet (also called “Bloch oscillations”) [83]. The size of the region over which
the electron oscillates and the period of these oscillations are inversely proportional to the magnitude of the static electric
field. It is worth mentioning that the effect of an electric field in linear chains of molecules was also studied in [84]. These
workers considered the Holstein Hamiltonian under the effect of an electric field. Within the Holstein formalism, the lattice
is harmonic and the charge becomes trapped due to the presence of a diagonal term related to the lattice oscillations. In
particular, they studied the Bloch oscillations of the trapped state and their association with the electron-phonon coupling.

In this work, we push forward the understanding of electronic transport in low-dimensional nonlinear systems under the
effect of a uniform electric field. We develop a numerical study of the non-interacting electron dynamics in a one-dimension
alloy where the nearest neighbor atoms are coupled by a Morse potential. In addition, we assume a static electric field paral-
lel to the chain. In such a model, the electron transport is treated quantum-mechanically over the alloy in the tight-binding
approximation, and the longitudinal vibrations of the lattice are described using a classical formalism. The electron-phonon
interaction is introduced by considering electron hopping as a function of the effective distance between neighboring atoms.
By solving numerically the dynamic equations for both the electron and the lattice vibrations, we compute the spreading of
an initially localized electronic wave-packet. We report numerical evidence of the existence of an electron-soliton pair, even
for the presence of a static electric field. We offer a detailed analysis of the dependence of this electron-soliton pair on the
magnitude of the electric field and the electron-phonon interaction.

2. Model and numerical calculation

In our work, we consider one electron moving in a 1d anharmonic lattice of N masses under the influence of a static
electric field. Our formalism consists of two parts: a quantum Hamiltonian to treat the electron dynamics, and a classical
anharmonic Hamiltonian in order to account for the atomic vibrations. The electronic Hamiltonian H, is defined as [54]:

He =) [(n = N/2)eEID}Dy + ¥ Vii1.4 (D}, Dn). (1)

It is a typical one-electron Hamiltonian under the effect of a static electric field E . Here, D:r, and D, are the creation and
annihilation operators for the electron at site n. eE represents the electric force on the electron of charge e. (n — N/2)eE
is the potential energy due to the coupling between the electron and the static electric field E. In order to avoid dealing
with large variations in the magnitude of energy along the chain, we shift to zero the potential energy on the center of the
lattice by including the constant —eEN/2. This is a simple and useful trick that decreases the absolute values of the potential
energy, thus improving the numerical stability of our calculations. V; is the hopping amplitude.
The atomic lattice in our work is defined by a classical Hamiltonian Hj,yjc. that considers the nearest neighbor sites
coupled by the Morse Potential [52,54]:
2
Hiattice = Z 21’)'11,«, ""Cl{l —exp[-G(qn — QH—I)]}2~ (2)
n

where p, and g, are the momentum and displacement of the mass at site n, respectively. C; represents the typical energy
of a bond and C, is the range parameter of the Morse potential [52,54]|. We set m, =1 and we obtain a dimensionless
representation of the quantities q,, pn, H by absorbing the constants C; and C, according to [52,54] : qn — CaoQn ; Pn —
pn/\/ﬁ and Hpagtice — Hiattice/(2C1)-

Here we follow [52,54] on the interaction between the electron and the vibrational modes. This is considered in our
model by relating the electronic parameters V.1, to the displacements of the molecular masses from their equilibrium
positions. The hopping elements V,,,; , depend on the relative distance between two consecutive molecules of the chain
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