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a b s t r a c t 

In this paper we study the generalized variable-coefficient Gardner equations of the 

form u t + A (t) u n u x + C(t) u 2 n u x + B (t) u xxx + Q(t) u = 0 . This class broadens out many other 

equations previously considered: Johnpillai and Khalique (2010), Molati and Ramollo (2012) 

and Vaneeva et al. (2015). The use of the equivalence group of this class allows us to per- 

form an exhaustive study and a simple and clear formulation of the results. Some conser- 

vation laws are derived for the nonlinearly self-adjoint equations by using a general theo- 

rem on conservation laws. We also construct conservation laws by applying the multipliers 

method. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Recent developments in the field of partial differential equations (PDEs) have led researchers to focus their efforts on the 

study of PDEs with variable coefficients, particularly in nonlinear equations with variable coefficients. These equations de- 

scribe many nonlinear phenomena more realistically than their constant-coefficient counterparts. Nonlinear evolution equa- 

tions play an important role in the field of nonlinear dynamics. Among them, we draw special attention to the Korteweg–de 

Vries (KdV) equation and its generalizations. The KdV equation has been used to model nonlinear problems with great 

physical interest in mathematical physics, nonlinear dynamics and plasma physics. The issue lies in the fact that the KdV 

equation is quite a simple equation to analyze these phenomena. Thus, generalizations of the KdV equation which involve 

more than one nonlinear term must be considered. For instance, the Gardner equation, also known as combined KdV–mKdV 

equation, is a useful model for the description of wave phenomena in plasma and solid state and internal solitary waves in 

shallow waters. 

Recently there has been much interest in the Gardner equation. In [11] Johnpillai and Khalique considered the generalized 

KdV equation with time dependent coefficients given by 

u t + u u x + B (t) u xxx + Q(t) u = 0 , (1) 

where B ( t ) and Q ( t ) are arbitrary smooth functions of t . Here, the third term represents the dispersion term while the fourth 

term is the linear damping. The time dependent coefficients of dispersion and damping are, respectively, B ( t ) and Q ( t ). The 

authors obtained the optimal system of one-dimensional subalgebras of the Lie symmetry algebras of class (1) . In [12] some 

∗ Corresponding author. Tel.: +34 695819401. 

E-mail addresses: rafael.delarosa@uca.es , fae_dasilva@hotmail.com (R. de la Rosa), marialuz.gandarias@uca.es (M.L. Gandarias), m.bruzon@uca.es 

(M.S. Bruzón). 

http://dx.doi.org/10.1016/j.cnsns.2016.04.009 

1007-5704/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.cnsns.2016.04.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2016.04.009&domain=pdf
mailto:rafael.delarosa@uca.es
mailto:fae_dasilva@hotmail.com
mailto:marialuz.gandarias@uca.es
mailto:m.bruzon@uca.es
http://dx.doi.org/10.1016/j.cnsns.2016.04.009


72 R. de la Rosa et al. / Commun Nonlinear Sci Numer Simulat 40 (2016) 71–79 

conservation laws for class (1) were constructed for some special forms of B ( t ) and Q ( t ). Molati and Ramollo obtained the 

Lie symmetries of the variable-coefficient Gardner equation given by 

u t + A (t) u u x + C(t) u 

2 u x + B (t) u xxx = 0 , (2) 

where A ( t ), B ( t ) and C ( t ) are smooth functions of t verifying B · C � = 0 [15] . Vaneeva et al. [20] enhanced the classification of 

Lie symmetries obtained in [15] by using the generalized extended equivalence group. 

In this paper, we broaden out the previous results by considering the generalized variable-coefficient Gardner equation 

with nonlinear terms of any order 

u t + A (t) u 

n u x + C(t) u 

2 n u x + B (t) u xxx + Q(t) u = 0 , (3) 

where n is a positive constant, A ( t ), B ( t ) � = 0, C ( t ) � = 0 and Q ( t ) � = 0 are arbitrary smooth functions of t . 

The analysis of nonlinear equations involving arbitrary functions is a rather difficult task. Thus, one could expect that 

there was a transformation which maps Eq. (3) into another equation from the same class with a smaller number of arbi- 

trary elements. This transformation can be obtained by using the gauging of arbitrary elements by equivalence transforma- 

tions. 

By definition, an equivalence transformation is a non-degenerate change of the dependent and independent variables 

with the property that it maps every equation of class (3) into an equation of the same class, i.e., into an equation preserv- 

ing the same differential structure but with different arbitrary functions. The main advantage of using equivalence trans- 

formations is that instead of considering individual equations, one can develop an analysis for complete equivalent classes. 

Therefore, the use of equivalence transformations provides a powerful tool for studying PDEs with variable coefficients. 

The symmetry group of a PDE is the largest group of transformations acting on the space of independent and dependent 

variables which transforms solutions of the equation into other solutions. One of the most powerful methods available to 

analyze PDEs is the method of Lie symmetry groups. Symmetry groups have several well-known applications. For instance, 

they can be used to obtain exact solutions [4,18,21] or to construct conservation laws [5–9,19] . 

Given a PDE, a conservation law is a space-time divergence expression which vanishes on all solutions of the PDE. Al- 

though this concept has its origin in physics, it has broad application in many other areas of science. In mathematics, they 

can be used in numerical methods and mathematical analysis to investigate the existence, uniqueness and stability of so- 

lutions of PDEs. Furthermore, the existence of a large number of conservation laws of a PDE is a strong indication of its 

integrability. 

This work is organized as follows. In Section 2 , we obtain the continuous equivalence group of Eq. (3) . Next, in 

Section 3 we get the Lie symmetries of the reduced equation which has been obtained using the gauging of arbitrary func- 

tions by equivalence transformations. In Sections 4 and 5 we use the concept of adjoint equation and we determine the 

subclasses of the equation which are nonlinearly self-adjoint. In Section 6 , we obtain conservation laws by using a general 

theorem proved by Ibragimov [13] and a direct method proposed by Anco and Bluman [1,2] . The conclusions are presented 

in Section 7 . 

2. Equivalence transformations 

In this section we determine the equivalence transformations of class (3) . These transformations allow us to reduce class 

(3) to a subclass with a smaller number of arbitrary elements. An equivalence transformation of class (3) is a nondegenerate 

point transformation, ( t , x , u ) to 
(

˜ t , ̃  x , ̃  u 
)

in the augmented space ( t , x , u , A , B , C , Q , n ) which transforms any equation of 

class (3) into an equation of the same class but with different arbitrary elements, ˜ A ( ̃ t ) , ˜ B ( ̃ t ) , ˜ C ( ̃ t ) , ˜ Q ( ̃ t ) and ˜ n from the 

original ones. We apply Lie’s infinitesimal criterion [17] to obtain the equivalence transformations of class (3) . However, in 

the case of the infinitesimal equivalence generator, we require not only the invariance of class (3) but also the invariance of 

the auxiliary system 

A x = A u = B x = B u = C x = C u = Q x = Q u = n t = n x = n u = 0 . (4) 

We consider the one-parameter group of equivalence transformations in ( t , x , u , A , B , C , Q , n ) given by 

˜ t = t + ε τ (t, x, u ) + O (ε2 ) , 

˜ x = x + ε ξ (t, x, u ) + O (ε2 ) , 

˜ u = u + ε η(t, x, u ) + O (ε2 ) , 

˜ A = A + ε ω 

1 (t, x, u, A, B, C, Q, n ) + O (ε2 ) , 

˜ B = B + ε ω 

2 (t, x, u, A, B, C, Q, n ) + O (ε2 ) , 

˜ C = C + ε ω 

3 (t, x, u, A, B, C, Q, n ) + O (ε2 ) , 

˜ Q = Q + ε ω 

4 (t, x, u, A, B, C, Q, n ) + O (ε2 ) , 

˜ n = n + ε ω 

5 (t, x, u, A, B, C, Q, n ) + O (ε2 ) , (5) 

where ε is the group parameter. In this case, the vector field takes the following form 

Y = τ∂ t + ξ∂ x + η∂ u + ω 

1 ∂ A + ω 

2 ∂ B + ω 

3 ∂ C + ω 

4 ∂ Q + ω 

5 ∂ n . (6) 
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