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a b s t r a c t 

We examine the performance of six estimators of the power-law cross-correlations—

the detrended cross-correlation analysis, the detrending moving-average cross-correlation 

analysis, the height cross-correlation analysis, the averaged periodogram estimator, the 

cross-periodogram estimator and the local cross-Whittle estimator—under heavy-tailed 

distributions. The selection of estimators allows to separate these into the time and fre- 

quency domain estimators. By varying the characteristic exponent of the α-stable distri- 

butions which controls the tails behavior, we report several interesting findings. First, the 

frequency domain estimators are practically unaffected by heavy tails bias-wise. Second, 

the time domain estimators are upward biased for heavy tails but they have lower esti- 

mator variance than the other group for short series. Third, specific estimators are more 

appropriate depending on distributional properties and length of the analyzed series. In 

addition, we provide a discussion of implications of these results for empirical applications 

as well as theoretical explanations. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Power-law cross-correlations have brought a new perspective into analysis of bivariate time series with applications 

across a wide range of disciplines—hydrology [1] , (hydro)meteorology [2,3] , seismology and geophysics [4,5] , economics 

and finance [6–12] , biometrics [13] , biology [14] , DNA sequences [15] , neuroscience [16] , electricity [17] , traffic [18–21] , and 

others. Analyzing cross-correlations between a pair of time series brings new insights into their dynamics and specifically, 

the power-law behavior of these may suggest very special features compared to exponential (vanishing) cross-correlations 

[22–27] . Presence of power-law cross-correlations is a very current topic in various scientific fields but, unfortunately, em- 

pirical papers strongly outnumber theoretical ones discussing their emergence and origin. Podobnik et al. [28] suggest that 

power-law cross-correlated processes can occur as a mixture of correlated long-range correlated processes. Sela & Hur- 

vich [25] and Kristoufek [26,27] add a possibility of long-range correlated processes with cross-correlated error terms as 

sources of long-range cross-correlations together with a discussion of various properties of such processes. Investigation of 

power-law cross-correlated processes has also led to an important novelty in analyzing cross-correlations at specific scales 

[29–32] as well as a new regression framework for specific scales [33] . 
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Formally, processes labeled as power-law (long-range, long-term) cross-correlated can be defined in both time and fre- 

quency domain. In the time domain, the long-range cross-correlated processes { x t } and { y t } are characterized by a power-law 

(hyperbolically) decaying cross-correlation function ρxy ( k ) with a time lag k so that ρxy (k ) ∝ k 2 H xy −2 for k → + ∞ [34] . In the 

frequency domain, the processes have a divergent at origin cross-power spectrum. Specifically, the cross-power spectrum 

f xy ( λ) with frequency λ scales as | f xy (λ) | ∝ λ1 −2 H xy for λ → 0+ [25] . The bivariate Hurst exponent H xy is a measure of long- 

range cross-correlations, specifically their decay. For H xy = 0 . 5 , the processes are not considered long-range cross-correlated 

whereas for H xy > 0.5, these are referred to as the cross-persistent processes which tend to move together. Time series with 

H xy < 0.5 form a very specific type of processes which have been theoretically only sparsely examined. 

In the same way as for the univariate series, the correlations scaling and the underlying distribution tail behavior are 

tightly interconnected [35,36] . Investigation of the relationship between the two goes back to Mandelbrot & Wallis [37] —

and thus hydrology—when examining the emerge of the so-called Hurst effect [38] . Even though the effect emerges both for 

long-range dependent processes and for processes with heavy tails, it is the correlation function, and specifically its shape, 

which is crucial. The confusion about the real and the spurious sources of the Hurst effect spreads also into self-similarity 

and phase transitions [39] . Such spurious effects can easily transfer into bivariate, or in general multivariate, setting which 

forms a motivational cornerstone of this text. 

Presence of heavy tails in distributions, or in other words high occurrence of extreme events, is well documented across 

disciplines [40–50] . However, the current stream of literature does not take a possible effect on estimators of the bivariate 

Hurst exponent implied by such heavy-tailed (fat-tailed) distributions into consideration. Here we fill this gap by focusing 

on three frequency domain estimators—the average periodogram estimator [25] , the cross-periodogram estimator and the 

local cross-Whittle estimator [51] —and three time domain estimators—the detrended cross-correlation analysis [52] , the 

detrending moving-average cross-correlation analysis [7,53] and the height cross-correlation analysis [54] —performance of 

which we examine under such distributions. Specifically, we study the effect of varying characteristic exponent of the α- 

stable distributions on bias, variance and mean squared error of the estimators for various time series lengths. 

2. Methods 

In this section, we shortly describe six estimators of the bivariate Hurst exponent. These are separated into two groups 

based on their domain of operation—time and frequency. The simulation setting is then described in detail. 

2.1. Time domain estimators 

The detrended cross-correlation analysis (DCCA, or DXA) [52] is the most popular time domain method of the bivariate 

Hurst exponent estimation, constructed as a bivariate generalization of the detrended fluctuation analysis (DFA) [55,56] . The 

method has led to various generalizations and expansions [57–59] . Considering two long-range cross-correlated series { x t } 

and { y t } with t = 1 , . . . , T and their respective profiles { X t } and { Y t }, the DCCA procedure is based on an examination of 

the detrending covariances scaling with respect to scale s . Specifically, the time series are divided into overlapping boxes of 

length s and the linear time trend is estimated in each box yielding ̂ X k, j and 

̂ Y k, j for boxes j ≤ k ≤ j + s − 1 . The detrended 

covariance f 2 
DCCA 

(s, j) is obtained for each box j of length s and it is further averaged over all boxes of length s to get 

F 2 
DCCA 

(s ) as an estimated covariance for scale s . For the power-law cross-correlated processes, we have F 2 
DCCA 

(s ) ∝ s 2 H xy . There 

are various ways of treating overlapping and non-overlapping boxes for scales s as the method can become computationally 

highly demanding [35,36,60–62] . Due to this fact, we use non-overlapping boxes with a minimum scale of 10, a maximum 

scale of T /5 and a step between s equal to 10 in the simulations. 

The height cross-correlation analysis (HXA) [54] is a bivariate generalization of the height-height correlation analysis 

(HHCA) [63,64] and the generalized Hurst exponent approach (GHE) [65–67] . The method is based on scaling of the height- 

height covariance function K xy, 2 (τ ) = 

ν
T ∗

∑ T ∗/ν
t=1 

| �τ X t Y t | ≡ 〈| �τ X t Y t |〉 of detrended profiles { X t } and { Y t } with time resolution 

ν and t = ν, 2 ν, ..., ν
 T ν � , where 
� is a lower integer sign. We denote T ∗ = ν
 T ν � , which varies with ν , and we write the τ - 

lag difference as �τ X t ≡ X t+ τ − X t and �τ X t Y t ≡ �τ X t �τ Y t for better legibility. The covariance function scales as K xy, 2 (τ ) ∝ 

τH xy for the power-law cross-correlated processes. Di Matteo et al. [65–67] suggest using the jackknife method to obtain 

more precise estimates of the Hurst exponent. In our simulations, we set τmin = 1 and vary τmax = 5 , . . . , 20 to get the 

estimated H xy as an average of these. 

The detrended moving-average cross-correlation analysis (DMCA) [7,53] is a generalization of the detrending moving av- 

erage (DMA) [68,69] . The method is in a way similar to DCCA as it assumes the power-law scaling of detrended covariances. 

However, there is no box-splitting involved in the procedure, which makes DMCA much less computationally demanding. 

Specifically, the profiles { X t } and { Y t } are detrended using the moving average of length κ and the covariances of residuals 

F 2 
DMCA 

(κ) scale as F 2 
DMCA 

(κ) ∝ κ2 H xy for the power-law cross-correlated processes. In our setting, we use the non-weighted 

centered moving averages with κmin = 11 and κmax = 1 + T / 5 with a step of 2, i.e. parallel to the DCCA setting. 

2.2. Frequency domain estimators 

Construction of the frequency domain estimators is based on the divergence at origin of the cross power-spectrum of the 

power-law cross-correlated processes. As the cross-power spectrum is unobservable, its estimation becomes a crucial part 



Download English Version:

https://daneshyari.com/en/article/758079

Download Persian Version:

https://daneshyari.com/article/758079

Daneshyari.com

https://daneshyari.com/en/article/758079
https://daneshyari.com/article/758079
https://daneshyari.com

