Contents lists available at ScienceDirect

### Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier.com/locate/cnsns

## Unpredictable points and chaos

### Marat Akhmet\*, Mehmet Onur Fen

Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey

#### ARTICLE INFO

Article history: Received 31 January 2016 Revised 4 April 2016 Accepted 7 April 2016 Available online 16 April 2016

*Keywords:* Unpredictable point Poincaré chaos Quasi-minimal set Symbolic dynamics

### ABSTRACT

It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. The existing definitions of chaos are formulated in sets of motions. This is the first time in the literature that description of chaos is initiated from a single motion. The theoretical results are exemplified by means of the symbolic dynamics.

© 2016 Elsevier B.V. All rights reserved.

#### 1. Introduction

The mathematical dynamics theory, which was founded by Poincaré [1] and significantly developed by the French genius and Birkhoff [2], was a source as well as the basis for the later discoveries and thorough investigations of complex dynamics [3–7]. The homoclinic chaos was discussed by Poincaré [8], and Lorenz [5] observed that a strange attractor contains a Poisson stable trajectory. Possibly, it was Hilmy [9,10] who gave the first definition of a quasi-minimal set (as the closure of the hull of a Poisson stable motion). In [10, p. 361] one can find a theorem by Hilmy, which states the existence of an uncountable set of Poisson stable trajectories in a quasi-minimal set. We modify the Poisson stable points to unpredictable points such that the quasi-minimal set is chaotic.

Let (X, d) be a metric space and  $\mathbb{T}$  refer to either the set of real numbers or the set of integers. A mapping  $f: \mathbb{T} \times X \to X$  is a flow on X [11] if:

(i) f(0, p) = p for all  $p \in X$ ;

- (ii) f(t, p) is continuous in the pair of variables t and p;
- (iii)  $f(t_1, f(t_2, p)) = f(t_1 + t_2, p)$  for all  $t_1, t_2 \in \mathbb{T}$  and  $p \in X$ .

If a mapping  $f: \mathbb{T}_+ \times X \to X$ , where  $\mathbb{T}_+$  is either the set of non-negative real numbers or the set of non-negative integers, satisfies (*i*), (*ii*) and (*iii*), then it is called a semi-flow on X [11].

Suppose that *f* is a flow on *X*. A point  $p \in X$  is stable  $P^+$  (positively Poisson stable) if for any neighborhood  $\mathcal{U}$  of *p* and for any  $H_1 > 0$  there exists  $t \ge H_1$  such that  $f(t, p) \in \mathcal{U}$ . Similarly,  $p \in X$  is stable  $P^-$  (negatively Poisson stable) if for any neighborhood  $\mathcal{U}$  of *p* and for any  $H_2 < 0$  there exists  $t \le H_2$  such that  $f(t, p) \in \mathcal{U}$ . A point  $p \in X$  is called stable *P* (Poisson stable) if it is both stable  $P^+$  and stable  $P^-$  [10].

\* Corresponding author. Tel.: +90 312 210 5355; fax:+90 312 210 2972.

E-mail addresses: marat@metu.edu.tr (M. Akhmet), monur.fen@gmail.com (M.O. Fen).

http://dx.doi.org/10.1016/j.cnsns.2016.04.007 1007-5704/© 2016 Elsevier B.V. All rights reserved.







For a fixed  $p \in X$ , let us denote by  $\Omega_p$  the closure of the trajectory  $\mathcal{T}(p) = \{f(t, p) : t \in \mathbb{T}\}$ , i.e.,  $\Omega_p = \overline{\mathcal{T}(p)}$ . The set  $\Omega_p$  is a quasi-minimal set if the point p is stable P and  $\mathcal{T}(p)$  is contained in a compact subset of X [10]. We will also denote  $\Omega_p^+ = \overline{\mathcal{T}^+(p)}$ , where  $\mathcal{T}^+(p) = \{f(t, p) : t \in \mathbb{T}_+\}$  is the positive semi-trajectory through p.

An essential result concerning quasi-minimal sets was given by Hilmy [9]. It was demonstrated that if the trajectory corresponding to a Poisson stable point p is contained in a compact subset of X and  $\Omega_p$  is neither a rest point nor a cycle, then  $\Omega_p$  contains an uncountable set of motions everywhere dense and Poisson stable. The following theorem can be proved by adapting the technique given in [9,10].

**Theorem 1.1.** Suppose that  $p \in X$  is stable  $P^+$  and  $\mathcal{T}^+(p)$  is contained in a compact subset of X. If  $\Omega_p^+$  is neither a rest point nor a cycle, then it contains an uncountable set of motions everywhere dense and stable  $P^+$ .

#### 2. Unpredictable points and trajectories

In this section, we will introduce unpredictable points and mention some properties of the corresponding motions. The results will be provided for semi-flows on X, but they are valid for flows as well. We will denote by  $\mathbb{N}$  the set of natural numbers.

**Definition 2.1.** A point  $p \in X$  and the trajectory through it are *unpredictable* if there exist a positive number  $\epsilon_0$  (the unpredictability constant) and sequences  $\{t_n\}$  and  $\{\tau_n\}$ , both of which diverge to infinity, such that  $\lim_{n\to\infty} f(t_n, p) = p$  and  $d[f(t_n + \tau_n, p), f(\tau_n, p)] \ge \epsilon_0$  for each  $n \in \mathbb{N}$ .

An important point to discuss is the sensitivity or unpredictability. In the famous research studies [1,4,5,7,8,12], sensitivity was considered as a property of a system on a certain set of initial data since it compares the behavior of at least couples of solutions. The above definition allows to formulate unpredictability for a single trajectory. Indicating an unpredictable point p, one can make an error by taking a point  $f(t_n, p)$ . Then  $d[f(\tau_n, f(t_n, p)), f(\tau_n, p)] \ge \epsilon_0$ , and this is unpredictability for the motion. Thus, we say about the unpredictability of a single trajectory whereas the former definitions considered the property in a set of motions. In Section 3, it will be shown how to extend the unpredictability to a chaos.

The following assertion is valid.

**Lemma 2.1.** If  $p \in X$  is an unpredictable point, then  $\mathcal{T}^+(p)$  is neither a rest point nor a cycle.

**Proof.** Let the number  $\epsilon_0$  and the sequences  $\{t_n\}$ ,  $\{\tau_n\}$  be as in Definition 2.1. Assume that there exists a positive number  $\omega$  such that  $f(t + \omega, p) = f(t, p)$  for all  $t \in \mathbb{T}_+$ . According to the continuity of f(t, p), there exists a positive number  $\delta$  such that if  $d[p, q] < \delta$  and  $0 \le t \le \omega$ , then  $d[f(t, p), f(t, q)] < \epsilon_0$ . Fix a natural number n such that  $d[p_n, p] < \delta$ , where  $p_n = f(t_n, p)$ . One can find an integer m and a number  $\omega_0$  satisfying  $0 \le \omega_0 < \omega$  such that  $\tau_n = m\omega + \omega_0$ . In this case, we have that

 $d[f(\tau_n, p_n), f(\tau_n, p)] = d[f(\omega_0, p_n), f(\omega_0, p)] < \epsilon_0.$ 

But, this is a contradiction since

 $d[f(\tau_n, p_n), f(\tau_n, p)] = d[f(t_n + \tau_n, p), f(\tau_n, p)] \ge \epsilon_0.$ 

Consequently,  $\mathcal{T}^+(p)$  is neither a rest point nor a cycle.  $\Box$ 

It is seen from the next lemma that the unpredictability can be transmitted by the flow.

**Lemma 2.2.** If a point  $p \in X$  is unpredictable, then every point of the trajectory  $\mathcal{T}^+(p)$  is also unpredictable.

**Proof.** Suppose that the number  $\epsilon_0$  and the sequences  $\{t_n\}$ ,  $\{\tau_n\}$  are as in Definition 2.1. Fix an arbitrary point  $q \in \mathcal{T}^+(p)$  such that  $q = f(\bar{t}, p)$  for some  $\bar{t} \in \mathbb{T}_+$ . One can verify that

$$\lim_{n\to\infty} f(t_n,q) = \lim_{n\to\infty} f(t_n+\bar{t},p) = \lim_{n\to\infty} f(\bar{t},f(t_n,p)) = f(\bar{t},p) = q.$$

Now, take a natural number  $n_0$  such that  $\tau_n > \overline{t}$  for each  $n \ge n_0$ . If we denote  $\zeta_n = \tau_n - \overline{t}$ , then we have for  $n \ge n_0$  that

$$d[f(t_n + \zeta_n, q), f(\zeta_n, q)] = d[f(t_n + \zeta_n, f(t, p)), f(\zeta_n, f(t, p))]$$
  
=  $d[f(t_n + \tau_n, p), f(\tau_n, p)]$   
>  $\epsilon_0.$ 

Clearly,  $\zeta_n \to \infty$  as  $n \to \infty$ . Consequently, the point *q* is unpredictable.  $\Box$ 

**Remark 2.1.** It is worth noting that the unpredictability constant  $\epsilon_0$  is common for each point on an unpredictable trajectory.

Download English Version:

# https://daneshyari.com/en/article/758085

Download Persian Version:

https://daneshyari.com/article/758085

Daneshyari.com