
Commun Nonlinear Sci Numer Simulat 33 (2016) 160–173

Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier.com/locate/cnsns

On the logistic equation subject to uncertainties in the

environmental carrying capacity and initial population density

F.A. Dorini a,∗, M.S. Cecconello b, L.B. Dorini c

a Department of Mathematics, Federal University of Technology - Paraná, 80230-901, Curitiba, PR, Brazil
b Department of Mathematics, Federal University of Mato Grosso, 78060-900, Cuiabá, MT, Brazil
c Department of Informatics, Federal University of Technology - Paraná, 80230-901, Curitiba, PR, Brazil

a r t i c l e i n f o

Article history:

Received 10 July 2015

Revised 15 September 2015

Accepted 26 September 2015

Available online 9 October 2015

Keywords:

Logistic equation

Uncertainties

Maximum entropy principle

First probability density function

a b s t r a c t

It is recognized that handling uncertainty is essential to obtain more reliable results in model-

ing and computer simulation. This paper aims to discuss the logistic equation subject to uncer-

tainties in two parameters: the environmental carrying capacity, K, and the initial population

density, N0. We first provide the closed-form results for the first probability density function of

time-population density, N(t), and its inflection point, t∗ . We then use the Maximum Entropy

Principle to determine both K and N0 density functions, treating such parameters as indepen-

dent random variables and considering fluctuations of their values for a situation that com-

monly occurs in practice. Finally, closed-form results for the density functions and statistical

moments of N(t), for a fixed t > 0, and of t∗ are provided, considering the uniform distribution

case. We carried out numerical experiments to validate the theoretical results and compared

them against that obtained using Monte Carlo simulation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Uncertainties are inherent in ecological system modeling and must be taken into account to improve the predictability and

accuracy of the estimates. In this context, many authors have introduced stochastic population models to investigate the effect

of environmental variability and perturbation [1–16]. Here, we explore uncertainties present in the logistic model, which is

commonly applied in the studies of human, plants and bacterial populations, as well as to evaluate economic growth.

The logistic model was introduced to describe population growth considering a self-limitation term that corrects the

unlimited growth of the Malthusian model [17]. The classical logistic (or Verhulst’s) equation is the nonlinear initial value

problem (IVP)

d

dt
N(t) = a N(t)

(
1 − N(t)

K

)
, t > 0,

N(0) = N0, (1)

where N(t) denotes the population density at time t, a > 0 is the intrinsic growth rate, N0 > 0 is the population density at time

t = 0 and K > 0 is the environmental carrying capacity. This latter parameter represents the absolute maximum number of

individuals in the population and is determined based on the limiting resource available.
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The parameters in IVP (1) are commonly considered accurate. Nevertheless, to design meaningful and realistic models, it

is crucial to take into account that they are imprecise due to both the implicit lack of information and the mistakes in the

measurement process present in related problems. Several approaches are considered, including the use of random variables to

represent such parameters [1–3,9,11,12]. In [12], for instance, the authors analyze the logistic equation (1) with noise fluctuations

in the carrying capacity. A probabilistic description of the solution of a random SI-type epidemiological equation, a model derived

from IVP (1), where uncertainty is considered in both the initial condition and the rate of decline in the proportion of susceptibles,

is presented in [1].

The Monte Carlo method [18] can be useful in this context. Basically, it numerically solves appropriate equations for repre-

sentative sets of realizations of random variables and then averages the computed functions. Besides being applied to a very

broad range of both linear and nonlinear problems, the large computational cost and the difficult to generalize the results may

be prohibitive.

The probability density function (pdf) is also well suited to mathematically model aleatory uncertainties, considering that it

incorporates all the statistical information about the process. Since there is usually not enough data from the experiments, the

pdf can be determined using the Maximum Entropy Principle (MEP). It solves an optimization problem to determine the most

unbiased probability distribution conditioned upon the available information.

In this work, we first use the environmental carrying capacity pdf, fK, and the initial population density pdf, fN0
to compute

closed-form results for the first pdf both of time-population density, N(t), for a fixed t > 0, and of its inflection point, t∗.

To better represent the imprecise nature of the problem, we focus on the stochastic modeling of the logistic equation to

introduce uncertainty into the K and N0 parameters, treated here as independent random variables in IVP (1). Using the MEP, we

determine the pdf of both parameters considering fluctuations of their values for a situation that commonly occurs in practice.

The propagation of these uncertainties to N(t), for a fixed t > 0, and t∗ are also discussed. The exact pdf both of N(t) and t∗ are

presented considering the uniform distribution case. In the numerical experiments, the obtained results are compared against

that obtained using Monte Carlo simulation.

Finally, we also derive the exact statistical moments of N(t) and the mean of t∗ for the uniform distribution case.

When an imprecise parameter is described by some probabilistic distribution, we assume that it is possible to choose a

representative value using specific statistical methods. Thus, the solution of IVP (1) is obtained after uncertainty handling. On

the other hand, it is also possible to first solve IVP (1), and then handle the uncertainty by treating such solution as a random

variable, for fixed t. In this paper, we carried out computational tests to compare a simplified (standard) version of (1) where K and

N0 are replaced by their mean, E[K] and E[N0], respectively, with the solution of the mean of the random solution, N(t), of IVP (1).

The organization of this article is as follows: Sections 2 and 3 present closed-form results for the first pdf both of N(t), for

a fixed t > 0, and t∗. In Sections 4–6, we use the MEP to estimate these pdf when introducing uncertainty into the K and N0

parameters. Closed-form results for the pdf and the statistical moments of N(t), for a fixed t > 0, and t∗ are provided. Finally, in

Section 7, numerical simulations illustrate the main results.

2. Computation of the pdf of N(t), for a fixed t > 0

In this section, we compute the first pdf of the population density, N(t), for a fixed t > 0, in (1) using both the environmental

carrying capacity pdf, fK, and the initial population density pdf, fN0
.

For each realization of N0 and K, note that (1) becomes a deterministic IVP whose solution is

N(t) = N(t; N0, K) = KN0

Ke−at + N0(1 − e−at)
, t ≥ 0. (2)

The distribution function of N(t), for a fixed t > 0, is given by

FN(q; t) = P(N(t) ≤ q) = P
(

KN0

Ke−at + N0[1 − e−at ]
≤ q, N0 > 0, K > 0

)

= P(KN0 − Kqα − N0q[1 − α] ≤ 0, N0 > 0, K > 0) =
∫∫

�N
q,t

fKN0
(K, N0) dK dN0, (3)

where q ∈ (0, +∞), 0 < α(t) = exp (−at) < 1, P denotes the probability measure, fKN0
is the joint pdf of K and N0 and �N

q,t is

the region defined by

�N
q,t :

{
KN0 − Kqα − N0q[1 − α] ≤ 0,

K > 0, N0 > 0.

Fig. 1 illustrates such region for q = 2 and α = 0.5.

Since in this paper we treat N0 and K as independent random variables, i.e., fKN0
= fK fN0

, FN(q; t) in (3) can be presented as

FN(q; t) =
∫ +∞

0

∫ q[1−α]

0

fK(K) fN0
(N0) dK dN0 +

∫ +∞

q[1−α]

∫ Kqα
K−q[1−α]

0

fK(K) fN0
(N0) dN0 dK

= FK(q[1 − α]) +
∫ +∞

q[1−α]

FN0

(
Kqα

K − q[1 − α]

)
fK(K)dK, (4)
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