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a b s t r a c t

In the present paper a quantum drift–diffusion model describing semi-conductor devices is
considered. New conservation laws for the model are computed and used to construct
exact solutions.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ultra small semiconductor devices can be found in thousands of products such as computers, cell phones and other mod-
ern appliances. Mathematical models of such devices naturally involve quantum mechanical considerations. See, e.g., [1–3]
and the references therein. Accordingly, these models are described by quite complicated systems of nonlinear partial dif-
ferential equations. Among these models macroscopic quantum models are of special interest because they are easier to ana-
lyse than the microscopic models. The simplest one is the so-called quantum drift–diffusion model, obtained by assuming
that the relaxation time of the semiconductor device is very small, involves such microscopic quantities as electron density
n and electrostatic potential V. The model is given by the following system of two partial differential equations:

nt ¼ div e2nr D
ffiffiffi
n
pffiffiffi
n
p

� �
þ hrðnÞ þ nrV

� �
;

k2DV ¼ CðxÞ � n:
ð1Þ

where CðxÞ describes the distribution of background ions, e > 0; k > 0 and h are physical constants.
To the best of our knowledge, no exact solutions of the system (1) have been presented in the literature. Our aim is to fill

this gap and to construct exact solutions of the system (1) using the recent method of conservation laws [4]. The first equa-
tion of the system (1) has the conservation form. However application of the method of conservation laws to this conserva-
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tion law gives only the stationary solution. Therefore we are interested in the question wether there are other conservation
laws.

For the sake of simplicity we will consider the one-dimensional case. In this case Eq. (1) is written:

nt ¼ e2 �1
2

nxxxx þ
1
n

nxnxxx þ n2
xx

� �
� 5n2

x nxx

2n2 þ n4
x

n3

� �
þ hnxx þ nVxx þ nxVx;

k2Vx ¼ CðxÞ � n:
ð2Þ

We will construct conservation laws to the system (2) by the method of nonlinear self-adjointness [5].

2. Nonlinear self-adjointness

Let us write the system (2) in the form

F1 ¼ 0; F2 ¼ 0; ð3Þ

where

F1 ¼ �nt þ e2 �1
2

nxxxx þ
1
n

nxnxxx þ n2
xx

� �
� 5n2

x nxx

2n2 þ n4
x

n3

� �
þ hnxx þ nVxx þ nxVx;

F2 ¼ �k2Vx þ CðxÞ � n:
ð4Þ

By definition [5] the adjoint system to Eq. (3) is written

F�1 ¼ 0; F�2 ¼ 0; ð5Þ

where

F�1 ¼
dL
dn

; F�2 ¼
dL
dV

; ð6Þ

with

L ¼ v1F1 ¼ v2F2:

Here v1; v2 are new dependent variables. The calculation gives

F�1 ¼ e2v1
xxxx þ 2e2 nx

n
v1

xxx þ 2e2 nxx

n
� e2 n2

x

n2 � 2h

� �
v1

xx þ 2Vxv1
x � 2v1

t þ v2;

F�2 ¼ nv1
xx þ nxv1

x þ k2v2
x ;

ð7Þ

According to [5] the system (3) will be nonlinearly self-adjoint if there exists a substitution

v1 ¼ u1ðt; x;n;VÞ; v2 ¼ u2ðt; x;n;VÞ; ð8Þ

such that the following equations are satisfied:

F�1jð8Þ ¼ l1
1F1 þ l2

1F2; F�2jð8Þ ¼ l1
2F1 þ l2

2F2; ð9Þ

where la
b are undetermined coefficients. The notation F�1jð8Þ; F�2jð8Þ means that the variables v1; v2 and their derivatives in (6)

are eliminated by means of the substitution (8).
Solving Eq. (9), we obtain the following substitution:

v1 ¼ UðtÞ; v2 ¼ U0ðtÞ; ð10Þ

where UðtÞ is an arbitrary function and U0ðtÞ is its derivative.

3. Symmetries and conservation laws

The system (2) has two symmetries:

X1 ¼
@

@t
; X2 ¼ gðtÞ @

@V
; ð11Þ

where gðtÞ is an arbitrary function.
The conserved vector associated with a symmetry

X ¼ ni @

@xi
þ ga @

@ua ;
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