
Detailed bifurcation analysis with a simplified model
for advance heavy water reactor system

Vikas Pandey, Suneet Singh ⇑
Department of Energy Science and Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, India

a r t i c l e i n f o

Article history:
Received 28 October 2013
Received in revised form 17 May 2014
Accepted 19 May 2014
Available online 24 May 2014

Keywords:
Floquet multiplier
Lyapunov coefficient
Limit point bifurcation of cycles
Generalized Hopf bifurcation

a b s t r a c t

The bifurcation analysis of fixed points and limit cycles with a simplified mathematical
model representing system dynamics of a boiling water reactor has been carried out,
specifically parameter values for AHWR is used. The lumped parameter model that
includes point reactor kinetics equation for neutron balance in the reactor core and one
node model for fuel and coolant thermal hydraulics is used in the analysis. The nonlinearity
due to reactivity is considered in the present model; while other nonlinearities due to heat
transfer process between fuel–clad and fuel–coolant has been neglected. The system loses
its stability via Hopf bifurcation as the system parameters are varied. The continuations of
subcritical and supercritical Hopf points show the existence of limit point bifurcations of
limit cycles (LPC). The codimension one and codimension two bifurcations of fixed points
for the system have been analyzed. The stability of observed limit cycles has been analyzed
by Floquet multiplier as well as by Lyapunov coefficient. The pattern of limit cycles and
envelopes of limit cycles over the fixed points have been studied by numerical integrations
and depicted by time history graphs.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear stability analysis of dynamical systems of nuclear reactors has been a very promising research area in the last
few decades. Different mathematical models for nuclear reactors have been developed for nonlinear stability analysis with or
without neutronics. Achard analytically investigated instabilities in the boiling channel without incorporating the neutronics
in reactor system by quasi linear Hopf bifurcation analysis to predict the amplitude and frequency of limit cycles near the
stability boundary in the unstable region [1]. Clause and Lahey used a homogeneous equilibrium two phase flow model
without considering neutronics in a boiling system. The supercritical Hopf bifurcation was observed which leads to chaos
via cascade of period doubling of limit cycles at low flow rate [2]. Rizwan-uddin and Dorning studied a heated boiling chan-
nel using two phase flow drift flux model without neutronics and found the occurrence of the supercritical Hopf bifurcation
in the vicinity of marginal stability boundary [3]. Lee and Pan studied boiling channel with riser using same approach as
Clausse and Lahey and found that the system leads to chaos via cascade of period doubling of limit cycles at high inlet sub-
cooling [4].

A phenomenological model considering point reactor kinetics, one node representation of heat transfer process in fuel
rods and thermal hydraulics of reactor channels have been developed and studied for nonlinear stability of a boiling water
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reactor. It has been concluded that the limit cycles bifurcates via period doubling and lead to chaos [5,6]. The fifth order
model of March-Leuba was reduced by Suzudo and Sinohara into third order model and studied analytically by bifurcation
theory for nonlinear nuclear reactor dynamical system [7]. A lumped parameter model was studied by Lahey analytically for
subcritical and supercritical Hopf bifurcation in the boiling channels [8]. The point reactor kinetics with different void reac-
tivity feedback models have been proposed by Wang and Kondo and studied with central manifold method and bifurcation
theory to find out the reason of excitation of limit cycles in the BWR dynamical system. It has been found that damping term
in the void reactivity defines the types of limit cycles [9].

Karve et al. and Dokhane et al. developed a reduced order model which was analyzed by BIFDD code for bifurcation anal-
ysis [10–12]. The bifurcation analysis of nuclear reactor systems was done for the local Hopf bifurcation in these works. Riz-
wan-uddin further extended these studies using BIFDD for the bifurcation analysis of March-Leuba model and confirmed the
existence of turning point bifurcation by numerical integrations [13]. However, it is observed that there are no studies on
limit point bifurcation of limit cycles and generalized Hopf bifurcations in the context of nuclear reactor dynamical systems.
In the present work, the codimension one and codimension two bifurcations of fixed points have been analyzed by observing
eigenvalues and Lyapunov coefficients respectively. The codimension one bifurcation of limit cycles has been studied by
observing Floquet multipliers. MATCONT, which is a mathematical package for numerical continuation, is used in the present
study to detect the codimension one and codimension two bifurcations [14]. The mathematical model of nuclear reactor sys-
tem used by Wahi and Kumawat has been adopted here for the analysis [15].

2. Mathematical background

The stability analysis of any physical system is study of change in temporal behavior of that system due to disturbances
from its operating conditions or steady state conditions. Although, the linear stability analysis is easier to carry out and less
computationally expensive, however, nonlinear stability of dynamical system is needed to give more characteristic informa-
tion about the system. The qualitative and quantitative behavior of any physical system depends on the parameters of that
particular system. The bifurcation analysis of any physical system, which is a part of nonlinear stability analysis, deals with
analysis of non-uniqueness of solutions of system and variation in the multiplicity of solutions as the parameters of the sys-
tem are varied. The Poincare–Andronov–Hopf bifurcation, generally known as Hopf bifurcation, has been observed by several
authors for various mathematical models of nuclear reactors [16,17].

The stability of local fixed points of any nonlinear system can be analyzed from characteristic roots of the Jacobian matrix.
The eigenvalues of the Jacobian matrix moves in the complex plane as system parameters are varied. The perturbation in the
system decays and settles to a fixed point of the system, if real parts of all the eigenvalues of the Jacobian are negative and
hence the system can be considered as stable. However, even if one eigenvalue has positive real part the system is unstable.

Nomenclature

C0 steady state precursor concentration of delayed neutrons (m�3)
CðsÞ precursor concentration of the delayed neutrons (m�3)
Cf heat capacity of the fuel element in the reactor core (J K�1)
hfg specific enthalpy of evaporation at saturation pressure (J kg�1)
N0 steady state neutron density (m�3)
NðsÞ neutron density (m�3)
P0 steady state reactor power (W)
PðsÞ the reactor power (W)
Tf ðsÞ the average fuel temperature (K)
Tf 0 steady state fuel temperature (K)
Tsat saturation temperature of the coolant (K)
U over all heat transfer coefficient including fuel conductivity (W K�1)
vg specific volume of saturated vapor at saturation pressure
V0 steady state void volume (m3)
VðsÞ void volume (m3)
af fuel temperature coefficient of reactivity ðK�1Þ
av void coefficient of reactivity (dimensionless)
b delayed neutrons fraction (dimensionless)
K neutron generation time (sec.)
k1 decay constant for the delayed neutron precursors (sec�1)
qðsÞ reactivity multiplication factor
s time (sec.)
AHWR advanced Heavy Water Reactor
BWR boiling water reactor
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