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a b s t r a c t

In this paper, we point out the differences between a class of fractional difference equa-
tions and the integer-order ones. We show that under the same boundary conditions,
the problem of the fractional order is nonresonant, while the integer-order one is resonant.
Then we analyse the discrete fractional boundary value problem in detail. Then the unique-
ness and multiplicity of the solutions for the discrete fractional boundary value problem
are obtained by two new tools established in 2012, respectively.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we are concerned with the following discrete fractional boundary value problem

�Dm
m�2yðtÞ ¼ kf ðt; yðt þ m� 1ÞÞ; t 2 N0;bþ1;

Dyðm� 2Þ ¼ Dyðmþ bÞ ¼ 0;

�
ð1:1Þ

where Dm
m�2 is an discrete fractional operator, k > 0;1 < m < 2;N0;b :¼ f0;1;2; . . . ; bg; b 2 N; b P 3 and f : N0;bþ1 � R! R.

If m ¼ 2, then the problem (1.1) can be changed into an integer-order one:

�D2yðtÞ ¼ kf ðt; yðt þ 1ÞÞ; t 2 N0;bþ1;

Dyð0Þ ¼ Dyð2þ bÞ ¼ 0:

(
ð1:2Þ

In the paper, we will show that the discrete fractional boundary value problem (1.1) is nonresonant, while the integer-
order one (1.2) is resonant.

Fractional calculus is a generalization of the ordinary differentiation and integration. It has played a significant role in
science, engineering, economy, and other fields [1–3]. Today there are a large number of papers dealing with the continuous
fractional calculus. However, the discrete fractional calculus has seen slower progress, for it is still a relatively new and
emerging area of mathematics. We refer the reader to [4–13] and the references therein for the history and basic theory
of the discrete fractional calculus. Of particular note is that Atici and S�eng€ul have shown the usefulness of fractional differ-
ence equations in tumor growth modeling in [14]. We can see that it shall provide a new tool to model physical phenomena
in the future. Thus, to study the fractional difference equations is meaningful, necessary and significant.

http://dx.doi.org/10.1016/j.cnsns.2014.04.010
1007-5704/� 2014 Elsevier B.V. All rights reserved.

q This research was supported by the Fundamental Research Funds for the Central Universities (2014QNA52).
⇑ Corresponding author. Tel.: +86 15116374123.

E-mail address: mathcyt@163.com (Y. Chen).

Commun Nonlinear Sci Numer Simulat 19 (2014) 4057–4067

Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2014.04.010&domain=pdf
http://dx.doi.org/10.1016/j.cnsns.2014.04.010
mailto:mathcyt@163.com
http://dx.doi.org/10.1016/j.cnsns.2014.04.010
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


Recent interests on the discrete fractional calculus are shown by Atici and Eloe [4,5], and in [5], they developed the commu-
tativity properties of the fractional sum and the fractional difference operators, and first studied a class of initial value problems.
Then there appeared a number of papers investigating the discrete fractional boundary value problems, such as [6,7,15–28].

In [22], the authors discussed a class of discrete fractional boundary value problems of order a 2 ð0;1�

� Da
a�1uðtÞ ¼ f ðt þ a� 1;uðt þ a� 1ÞÞ; t 2 ½0; T�Z0

;

auða� 1Þ þ buðaþ TÞ ¼ c:

Their investigations have shown that differences occur between the cases of a ¼ 1 and a < 1 when considering periodic
boundary value conditions.

Motivated by Ferreira [22], we investigate the difference between the problems (1.1) and (1.2). Besides, We obtain the
multiplicity of solutions by a new fixed point theorem by Franco et al. in [29], and prove the uniqueness by a new tool estab-
lished by Jleli et al. in [30]. For more details about the discrete fractional boundary value problem and the tools used in our
paper, we refer the readers to [5,11,14,16,22,29,30]. In these papers, readers cannot only find more details about the topic
but also can have a more in-depth understanding.

To the best of our knowledge, most of the recent papers are concerning about the existence of solutions by the Krasno-
sel’shii fixed point theorem, and there are seldom papers dealing with the existence of multiple solutions. In addition, most
of them dealt with the uniqueness of the solution by contraction mapping theorem. And in this paper, we will see that the
uniqueness result given in our paper is a different one from those obtained by the contraction mapping theorem.

The rest of the paper is organized as follows. Section 2, we introduce some notations, definitions, and preliminary facts
that will be used in the remainder of the paper. We get the Green’s function Gðt; sÞ of problem (1.1) and discuss the properties
of it, and then we point out the differences between problems (1.1) and (1.2) in Section 3. In Section 4 and 5, we obtain the
multiplicity and uniqueness of positive solutions for the problem (1.1), respectively, and examples are given to demonstrate
the applications of our results.

2. Preliminaries

Now we present some fundamental facts on the discrete fractional calculus theory which will be found in the recent
papers in the literature (cf. [5–7,10,15,16]). For convenience, we introduce the following notations which will be used in
the sequence:

Na ¼ fa; aþ 1; aþ 2; . . . ; g; a 2 R;

Nc;d ¼ fc; c þ 1; c þ 2; . . . ;dg; c; d 2 R; c � d > 0; c � d 2 Z:

We also assume that the empty sums are zero.

Definition 2.1 [6]. Let f : Na ! R and m > 0 be given. Then the mth-order fractional sum of f is given by

D�m
a f

� �
ðtÞ ¼ D�m

a f ðtÞ :¼ 1
CðmÞ

Xt�m

s¼a

ðt � rðsÞÞm�1f ðsÞ; for t 2 Naþm: ð2:1Þ

Also, we define the trivial sum by D0
af ðtÞ :¼ f ðtÞ, for t 2 Na.

Remark 2.1 [6]. The r-function in Definition 2.1 comes from the general theory of time scales. It denotes the next point in
the time scale after s. In this case, rðsÞ ¼ sþ 1, for all s 2 Na. The term ðt � rðsÞÞm�1 in Definition 2.1 is the so-called general-
ized falling function, defined by

tl :¼ Cðt þ 1Þ
Cðt þ 1� lÞ

for any t;l 2 R for which the right-hand side is well-defined. We appeal to the convention that if t þ 1� l is a pole of the
Gamma function while t þ 1 is not a pole, then tl ¼ 0.

Definition 2.2 [6]. Let f : Na ! R and m > 0 be given, and let N 2 N be chosen such that N � 1 < m 6 N. Then the mth-order
fractional difference of f is given by

Dm
af

� �
ðtÞ ¼ Dm

af ðtÞ :¼ DND�ðN�mÞ
a f ðtÞ; for t 2 NaþN�m: ð2:2Þ

Remark 2.2. In [6], Holm proved that

Dm
af ðtÞ ¼

1
Cð�mÞ

Xtþm

s¼a

ðt � rðsÞÞ�m�1f ðsÞ; N � 1 < m < N;

DNf ðtÞ; m ¼ N:

8><
>: ð2:3Þ
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