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a b s t r a c t

In this paper a Lorenz-like system, describing convective fluid motion in rotating cavity, is con-

sidered. It is shown numerically that this system, like the classical Lorenz system, possesses a

homoclinic trajectory and a chaotic self-excited attractor. However, for the considered system,

unlike the classical Lorenz system, along with self-excited attractor a hidden attractor can be

localized. Analytical-numerical localization of hidden attractor is demonstrated.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following physical problem: the convection of viscous incompressible fluid motion inside the ellipsoid
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= 1, a1 > a2 > a3 > 0,

under the condition of stationary inhomogeneous external heating. It is assumed that the ellipsoid together with heat sources

rotates with the constant velocity �0 around its axis. Vector l0 determines the orientation of the ellipsoid in the space and has

the same direction as the gravity vector g. Vector g is stationary with respect to the ellipsoid motion. The value �0 is assumed

to be such that the centrifugal forces can be neglected in comparison with the influence of the gravitational field. Consider the

case when the ellipsoid rotates around the axis x3 that has a constant angle α with the gravity vector g (|g| = g) and the vector

g is placed in the plane x1x3. Then �0 = (0, 0, �0) and l0 = (a1sin α, 0, − a3cos α). Let the steady-state temperature difference

�T̂ = (q0, 0, 0) be generated along the axis x1 (Fig. 1). Corresponding mathematical model (three-mode model of convection)
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Fig. 1. Illustration of the problem setting.

was obtained by Glukhovsky and Dolzhansky [1] in the following form⎧⎨
⎩

ẋ = Ayz + Cz − σ x,

ẏ = −xz + Ra − y,

ż = xy − z.
(1)

Here
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μ
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σ sin α,

x(t) = μ−1

(
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, y(t) = gβa3

2a1a2λμ
q1(t),

z(t) = gβa3
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and λ, μ, β are the coefficients of viscosity, heat conduction, and volume expansion, respectively; q1(t), q2(t), and q3(t) (q3(t)

� 0) are temperature differences on the principal axes of ellipsoid a1, a2, and a3, respectively; ω1(t), ω2(t), and ω3(t) are the

projections of the vectors of fluid angular velocities on the axes x1, x2, and x3, respectively. Here

ω1(t) = − gβa3

2a1a2�0
cos α q1(t), ω2(t) = − gβa3

2a1a2�0
cos α q2(t).

The parameters σ , Ta, and Ra are the Prandtl, Taylor, and Rayleigh numbers, respectively.

After the linear transformation (see, e.g., [1,2]):

x → x, y → R − σ

a0R + 1
C−1z, z → σ

a0R + 1
C−1y,

one obtains the following system⎧⎨
⎩

ẋ = −σ(x − y)− ayz
ẏ = rx − y − xz
ż = −z + xy,

(2)

where a0 = A/C2, R = Ra C,

a = a0σ 2

(a0R + 1)2
, r = R

σ
(a0R + 1). (3)

System (2) with a = 0 coincides with the classical Lorenz system [3] with b = 1. As it is discussed in [2], system (2) can also be

used to describe the following physical processes: waves interaction in plasma [4–7], the convective fluid motion inside rotating

ellipsoid [1], the rotation of rigid body in viscous fluid [8], the gyrostat dynamics [9,10], the convection of horizontal layer of

fluid making harmonic oscillations [11], and the model of Kolmogorov’s flow [12].

Note that the Glukhovsky–Dolzhansky system is sufficiently different from the classical Lorenz system. In the Lorenz system,

the convective fluid motion in two dimensions is considered only. In the Glukhovsky–Dolzhansky system, the convective fluid

motion in three dimensions is considered which can be interpreted as one of the models of ocean flow [1].

In [13] for system (2) in the case σ = ±ar a detailed analysis of the equilibria stability and asymptotic behavior of trajectories

is given and the values of parameters are obtained for which system (2) is integrable.

In what follows system (2) will be considered under the condition that the parameter a is positive. In this case if r < 1, then

(2) has a unique equilibrium S0 = (0, 0, 0), which is globally asymptotically Lyapunov stable [2,14]. If r > 1, then system (2) has

three equilibria: S0 = (0, 0, 0) and

S1,2 = (±x1, ±y1, z1). (4)
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