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a b s t r a c t

In this paper, we prove the existence of 12 small-amplitude limit cycles around a singular
point in a planar cubic-degree polynomial system. Based on two previously developed
cubic systems in the literature, which have been proved to exhibit 11 small-amplitude
limit cycles, we applied a different method to show 11 limit cycles. Moreover, we show
that one of the systems can actually have 12 small-amplitude limit cycles around a singular
point. This is the best result so far obtained in cubic planar vector fields around a singular
point.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Studying bifurcation of limit cycles in planar polynomial systems is related to the second part of the well-known Hilbert’s
16th problem [1]. The progress in the solution of the problem is very slow. It has not even solved the simplest quadratic sys-
tems after more than one century since the problem was posed by Hilbert at the Paris conference of the International Con-
gress of Mathematicians in 1900. More precisely, the second part of Hilbert’s 16th problem is to find the upper bound, called
Hilbert number HðnÞ, on the number of limit cycles that the following system,

_x ¼ Pnðx; yÞ; _y ¼ Qnðx; yÞ; ð1Þ

can have, where Pnðx; yÞ, and Q nðx; yÞ, represent nth-degree polynomials of x, and y. In early 1990’s, Ilyashenko and Yak-
ovenko [2], and Écalle [3] independently proved that HðnÞ is finite for given planar polynomial vector fields. For general qua-
dratic polynomial systems, the best result is Hð2ÞP 4, obtained more than 30 years ago [4,5]. Recently, this result was also
obtained for near-integrable quadratic systems [6]. However, whether Hð2Þ ¼ 4, is still open. For cubic polynomial systems,
many results have been obtained on the low bound of the Hilbert number. So far, the best result for cubic systems is
Hð3ÞP 13 [7,8]. Note that the 13 limit cycles obtained in [7,8] are distributed around several singular points. This number
is believed to be below the maximal number which can be obtained for generic cubic systems. A comprehensive review on
the study of Hilbert’s 16th problem can be found in a survey article [9].

In order to help understand and attack Hilbert’s 16th problem the so called weak Hilbert’s 16th problem was posed by
Arnold [10], which is closely related to the so-called near-Hamiltonian system [11]:
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_x ¼ Hyðx; yÞ þ epnðx; yÞ; _y ¼ �Hxðx; yÞ þ eqnðx; yÞ; ð2Þ

where Hðx; yÞ; pnðx; yÞ, and qnðx; yÞ, are all polynomial functions of x, and y, and 0 < e� 1, represents a small perturbation.
Investigating the bifurcation of limit cycles for such a system can be now transformed to investigating the zeros of the (first-
order) Melnikov function, given as an integral

Mðh; dÞ ¼
I

Hðx;yÞ¼h
qnðx; yÞdx� pnðx; yÞdy; ð3Þ

along closed orbits Hðx; yÞ ¼ h for h 2 ðh1;h2Þ, where d denotes the parameters (or coefficients) involved in the polynomial
functions qn and pn.

When we focus on the maximum number of small-amplitude limit cycles, MðnÞ, bifurcating from an elementary center or
an elementary focus in system (1), one of the best-known results is Mð2Þ ¼ 3, which was solved by Bautin in 1952 [12]. For
n ¼ 3, a number of results have been obtained. Around an elemental focus, James and Lloyd [13] considered a particular class
of cubic systems to obtain 8 limit cycles in 1991, and the systems were reinvestigated couple of years later by Ning et al. [14]
to find another solution of 8 limit cycles. Yu and Corless [15] constructed a cubic system and combined symbolic and numer-
ical computations to show 9 limit cycles in 2009, which was confirmed by purely symbolic computation with all real solu-
tions obtained in 2013 [16]. Another cubic system was also recently constructed by Lloyd and Pearson [17] to show 9 limit
cycles with purely symbolic computation.

On the other hand, around a center, there are also a few results obtained in the past two decades. _Zoła̧dek studied clas-
sification of cubic centers and listed 17 cases for reversible centers and 35 cases for Darboux centers [18,19]. In 1995, _Zoła̧dek
[20] first proposed a rational Darboux integral,

H0 ¼
f 5
1

f 4
2

¼ ðx4 þ 4x2 þ 4yÞ5

ðx5 þ 5x3 þ 5xyþ 5x=2þ aÞ4
; ð4Þ

and used it to prove the existence of 11 small-amplitude limit cycles around a center. This result was extensively cited by
many researchers in this area. After more than ten years, another two cubic systems are constructed to show 11 limit cycles
[21,22]. Recently, the system defined by (4) was reinvestigated by Yu and Han with the method of focus value computation,
who only obtained 9 limit cycles [23]. This obvious difference motivated a further investigation on this problem. Very re-
cently, Tian and Yu [24] has proved that the 11 limit cycles obtained by _Zoła̧dek [20] are not correct, and the mistakes leading
to the erroneous result have been identified.

In this paper, we will consider the two cubic systems proposed by Christopher [21], and Bondar and Sadovskii [22]. The
first system discussed in [21] is determined by a Darboux first integral,

H1 ¼
ðxy2 þ xþ 1Þ5

x3 xy5 þ 5
2 xy3 þ 5

2 y3 þ 15
8 xyþ 15

4 þ a
� �2 ; ð5Þ

where a is a parameter, from which we obtain the following dynamical system,

_x ¼ 10ð32a2 � 75Þ2xð�6� 9x� 3x2 þ 8axy� 12y2Þ;
_y ¼ ð32a2 � 75Þ2ð24a� 16axþ 90yþ 15xy� 16axy2 þ 60y3Þ; ð32a2 � 75 – 0Þ:

ð6Þ

System (6) has an equilibrium point, given by

xe ¼
6ð8a2 þ 25Þ
32a2 � 75

; ye ¼
70a

32a2 � 75
: ð7Þ

Shifting the equilibrium point ðxe; yeÞ to the origin and setting a ¼ 2 yields the system:

_x ¼ �10ð342þ 53xÞð289x� 2112yþ 159x2 � 848xyþ 636y2Þ;
_y ¼ �605788xþ 988380y� 432745xyþ 755568y2 � 89888xy2 þ 168540y3;

ð8Þ

which has been studied in [21] to show 11 small-amplitude limit cycles around the origin (i.e., around the equilibrium point
ðxe; yeÞ of system (6)).

The second system given in [22] is described by

_x ¼ y½1� 2rð3r2 þ 5Þxþ ðr2 þ 3Þð3r2 þ 1Þ2x2� � ~f 1ðx; yÞ;
_y ¼ �xð1� 8rxÞ½1� 3rðr2 þ 3Þx� þ 2½2ð3r2 � 1Þ � rðr2 þ 3Þð15r2 � 7Þx�xy� ½rðr2 þ 11Þ � ðr2 þ 3Þð3r4 þ 22r2 � 1Þx�y2

þ 2rðr2 þ 3Þðr2 � 1Þy3 � ~f 2ðx; yÞ;
ð9Þ

where r is a parameter. It can be shown that the origin of system (9) is a center [22].
To find the small-amplitude limit cycles bifurcating from the origin of the systems (8) and (9), in general we may apply

perturbations to the systems and then compute the Melnikov functions around the loops defined by the first integral
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