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a b s t r a c t

In this paper, we present a perturbation method that utilizes Hamiltonian perturbation
theory and averaging to analyze spatio-temporal structures in Gross–Pitaevskii equations
and thereby investigate the dynamics of modulated amplitude waves (MAWs) in quasi-
one-dimensional Bose–Einstein condensates with mean-field interactions. A good approx-
imation for MAWs is obtained. We also explore dynamics of BECs with the nonresonant
external potentials and scatter lengths varying periodically in detail using Hamiltonian
perturbation theory and numerical simulations.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of Bose–Einstein condensates (BECs) is a fundamental phenomenon connected to superfluidity and super-
conductivity in liquid helium [1]. In the mean-field approximation, and at sufficiently low temperatures, the dynamics of
matter waves in BECs are accurately described by the Gross–Pitaevskii (GP) equation [2], namely a variant of the nonlinear
Schrödinger (NLS) equation with an external potential and the nonlinearity coefficient
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where w is the mean-field condensate wave function (with density jwj2 measured in units of the peak 1D density n0), x and t

are normalized, respectively, to the healing length n ¼ �h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0jg1jm
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and n=c (where c ¼ �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
is the Bogoliubov speed

of sound), and energy is measured in units of the chemical potential d ¼ g1n0. In the above expressions, g1 ¼ 2�hx?a0, where
x? denotes the confining frequency in the transverse direction, and a0 is a characteristic value of the scattering length. The
nonlinearity coefficient gðxÞ is caused by the spatially varying scattering length, which has been crucial to many experimen-
tal achievements, such as the formation of molecular condensates and probing the so-called BEC–BCS crossover. Of particular
interest are BECs in optical lattices (periodic potentials), which have already been used to study Josephson effects, squeezed
states, Landau–Zener tunneling and Bloch oscillations, and the transition between superfluidity and Mott insulation.
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Finding exact solutions to the GP equation in nontrivial settings is a problem of great significance [3], and the literature of
the exact solutions for the GP equation’ (1.1) consists of numerous papers, for some recent work we can refer to [4–8]. Mod-
ulated amplitude waves (MAWs) with the uniformly propagating coherent structures

wðt; xÞ ¼ RðxÞ expði½HðxÞ � lt�Þ; ð1:2Þ

as a class of exact solutions, yielding a special interest, which generalize the Bloch modes occurring in linear system with
periodic potentials [9], have been extensively studied [10,11] in case of h independent of x (standing waves), where
wðt; xÞ is periodic and quasiperiodic with respect to the spatial variable x. Meanwhile, the MAWs in the complex Ginz-
burg–Landau system have been studied by Brusch and co-authors [12].

The dynamics of solutions with coherent structure (1.2) for GP equation have been studied in recent paper [14,13] by the
averaged method and topology degree theory. In these papers, a complicated transform is constructed, which can change a
singular system into a standard form of averaging. However, as stated in [13], this transformation is not exact symplectic,
and the Hamiltonian structure has been destroyed which maybe lead to loss of dynamical information of the original system.
Therefore, looking for an appropriate symplectic transformation is an important topic for discussion.

In this paper, we will investigate the dynamics of MAWs by the averaged method and Hamiltonian perturbed method. We
transform the original system with the Hamiltonian form into a simple one by constructing a series of canonical transfor-
mations via generating functions. The dynamics of the transformed system is easily studied. If the frequencies of the external
potential VðxÞ and the nonlinearity coefficient gðxÞ are nonresonant to the ones of the unperturbed system, the existence of
infinitely many periodic and quasiperiodic MAWs can be proved by the Moser twist theorem and Poincaré–Birkhoff twist
theorem. In this situation, a good approximation of order one for MAWs is obtained. In the other case, we can only determine
the existence of the two periodic solutions corresponding to the MAWs via the equilibria of the averaged system by the aver-
aged method for given integration constant.

Inserting (1.2) into (1.1), we obtain the following two coupled nonlinear ordinary differential equations

R00 þ ~dR� c2

R3 þ e~gðxÞR3 þ e~VðxÞR ¼ 0; ð1:3Þ

H00 þ 2H0R0=R ¼ 0) H0ðxÞ ¼ c

R2 ; ð1:4Þ

where

~d :¼ 2l; e~gðxÞ :¼ �2gðxÞ; e~VðxÞ :¼ �2VðxÞ

and the integration constant c, determined by the velocity and number density, plays the role of ‘‘angular momentum’’.
Inspecting Eq. (1.3) we know that for the simple case, i.e., c ¼ 0, it is just the parametrically driven Duffing equation with

the time variable replaced by the spatial coordinate, the MAWs in this system have been widely researched [10,15]. In the
general case, c – 0, the system with regularities becomes more complicated and the MAWs may be kept [13].

For notational convenience, we drop the tildes from ~d; ~g and ~V , and without loss of generality, we take the integration
constant c ¼ 1, so that (1.3) is written in the form of a forced second-order ODE as

R00 þ dR� 1
R3 þ egðxÞR3 þ eVðxÞR ¼ 0: ð1:5Þ

Similarly, for convenience we move the coordinate x ¼ 0 to x ¼ �c0 :¼ d1=4, then Eq. (1.5) is equivalent to the following pla-
nar Hamiltonian system

R0 ¼ S

S0 ¼ �dðR� c0Þ þ 1
ðR�c0Þ3

� egðxÞðR� c0Þ3 � eVðxÞðR� c0Þ:

(
ð1:6Þ

In this paper, we consider the case that both VðxÞ and gðxÞ are periodic functions (periodic potential and scattering length
subjected to a spatially periodic modulation), and d > 0 corresponding to a positive chemical potential.

The rest of paper is organized as follows. In Section 2, at first we introduce the change of action-angle variables, then
transform equation (1.6) to a standard form of averaging. The existence of period solutions will be determined by the equi-
libria of the averaged system. In Section 3 we construct a series of canonical transformations via generating functions to
transform the original Hamiltonian into a simple form. A good approximation of order one for MAWs is obtained.

2. Construction of action and angle variables

We carry out the standard reduction for Eq. (1.6) to the action and angle variables [16]. In order to introduce action and
angle variables, we consider the auxiliary autonomous system

R0 ¼ S; S0 ¼ �dðRþ c0Þ þ
1

ðRþ c0Þ3
: ð2:1Þ
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