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a b s t r a c t

We propose an approach for generation of deterministic Brownian motion. By adding an
additional degree of freedom to the Langevin equation and transforming it into a system
of three linear differential equations, we determine the position of switching surfaces,
which act as a multi-well potential with a short fluctuation escape time. Although the
model is based on the Langevin equation, the final system does not contain a stochastic
term, and therefore the obtained motion is deterministic. Nevertheless, the system behav-
ior exhibits important characteristic properties of Brownian motion, namely, a linear
growth in time of the mean square displacement, a Gaussian distribution, and a �2 power
law of the frequency spectrum. Furthermore, we use the detrended fluctuation analysis to
prove the Brownian character of this motion.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Brownian motion has been extensively studied since the findings of the biologist Brown in 1828 [1] and first described by
the mathematician Thiele [2] in his paper on the least squares method published in 1880. At that time, Brownian motion was
defined as a continuous-time stochastic (or probabilistic) process characterized by normal distribution. The nature of the
Brownian motion is uncertain and many questions still remain open of how it could depend on particle interactions with
the environment, is this process stochastic or deterministic?

After the Thiele’s paper, the study of Brownian motion has been followed independently by Bachelier [3] and Albert Ein-
stein [4], who gave the first mathematical description of a free particle Brownian motion. Later, Smoluchowski [5] brought
the solution of the problem to the attention of physicists. In 1908, Langevin [6] obtained the same result as Einstein, using a
macroscopically description based on the Newton’s second law. He referred his approach to as ‘‘infinitely simplest’’ because
it was much simpler than the one proposed by Einstein. Since the pioneering work of Langevin, many papers have been de-
voted to the description of Brownian motion [7–16], where characteristic features of this behavior have been defined.

The dynamical model of Brownian motion provided by Langevin [6], who used a second-order differential equation with a
stochastic term, seems apparently from the nature of randomness. On the other hand, it is widely believed that Brownian
motion can be rigorously derived from totally deterministic Hamiltonian models of classical mechanics. One of the reasons
for this conviction is related to the widely used Van Hove’s method [17–19]. In one way or another, many attempts to
establish a unified view of mechanics and thermodynamics [20] traced back to the Van Hove’s approach. The result of their
method depended on whether one adopted the Heisenberg perspective corresponding to the time evolution of observables,
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or the Schrödinger perspective corresponding to the time evolution of the Liouville density. In [21] a Fokker–Planck equation
has been derived with the aid of a set of variables of interest interacting with a booster, i.e., a dynamical system mimicking
the action of an ideal thermostat with no need of ad hoc statistical assumptions; this approach is based on the assumption of
a large number of degrees of freedom, the booster is an n-dimensional deterministic system. In the former case, the usual
outcome was derived from the ordinary Langevin equation.

The idea of deterministic Brownian motion has been also moot in hydrodynamics and oscillatory chemical reactions,
where in spite of an erratic or random character of time evolution, the observed motion is completely deterministic and
sometimes it is referred to as microscopic chaos [22–26]. In 1998 Gaspard, et al. [27] have reported on the experimental evi-
dence of microscopic chaos in fluids, obtained by direct observation of Brownian motion of a colloidal particle suspended in
water. Deterministic random walk of a phase difference, similar to Brownian motion, has also been observed in coupled cha-
otic oscillators [28]. A deterministic Brownian motion generator has been previously proposed by Trefàn et al. [29], where
the nonlinear generator has been presented by a discrete system which generates pseudo-random numbers [30]. The micro-
scopic chaotic process drives a Brownian particle and has ‘‘statistical’’ properties that differ markedly from the standard
assumption of Gaussian statistics.

In many paper devoted to Brownian motion, this behavior is characterized by specific properties, such as a linear in time
growth of the mean square displacement, an exponential in time decay of the positional autocorrelation function, and the
Lorentzian shape of the power spectrum with a �2 power law of a high-frequency slope [19,27,31]. Another important
way to determine Brownian motion is the detrended fluctuation analysis (DFA) developed by Peng et al. [32]. The DFA allows
one to measure a simple quantitative parameter, the scaling exponent bm which characterizes correlation properties of a
signal.

In this paper we introduce an approach to generate deterministic Brownian motion and determine its character by ana-
lyzing time series, power spectrum, and via DFA.

2. Model

A typical example of Brownian motion is particle mixing agitation in fluids. The perpetual motion of a particle occurs due
to collisions with molecules of the surrounding fluid. Under normal conditions in a liquid, a Brownian particle suffers from
about 1021 collisions per second, this is so frequent that we cannot really speak of separate collisions. Furthermore, since
each collision can be thought of as producing a kink in the path of the particle, one cannot hope to follow the path in any
detail, i.e., the details of the path are infinitely fine. Each of these collisions is always determined by the last event produced
by physical interactions in the system.

The modern theory of Brownian motion of a free particle (in the absence of an external field of force) is generally gov-
erned by the Langevin equation [6]

€x ¼ �c _xþ Af ðtÞ; ð1Þ

where _x ¼ dx=dt and €x ¼ d2x=dt2 denote the particle velocity and the acceleration, respectively. According to this equation,
the influence of the surrounding medium on the particle motion can be split into two parts. The first term �c _x stands for the
dynamical friction applied to the particle and the second term Af ðtÞ is the fluctuation acceleration which provides a stochas-
tic character of Brownian motion and depends on the fluctuation force Ff ðtÞ as Af ðtÞ ¼ Ff ðtÞ=m, where m is the particle mass.

It is assumed that the friction term �c _x is governed by the Stokes’ law which states that the friction force 6pag _x=m decel-
erates a spherical particle of radius a and mass m. Hence, the friction coefficient is

c ¼ 6pag=m; ð2Þ

where g denotes the viscosity of the surrounding fluid.
Concerning the fluctuation term Af (t), we make two principal assumptions:

(i) Af ðtÞ is independent of _x.
(ii) Af ðtÞ varies extremely fast as compared with the variation of _x.

The latter assumption implies that there exists a time interval Dt during which the variations in _x are very small. Alter-
natively, we may say that though _xðtÞ and _xðt þ DtÞ are expected to differ by a negligible amount, no correlation between
Af ðtÞ and Af ðt þ DtÞ exists.

Because a particle is immersed in a liquid or gas at ordinary pressure, Einstein [4] used the Stokes formula to calculate the
mean square Dx2 of displacement Dx of a spherical particle in a given direction x after a given time s to be

Dx2 ¼ 2Dt ¼ RT
N

1
3pga

s; ð3Þ

where Dx2 ¼ x2 � x2
0; D is the diffusion coefficient at temperature T; R is the gas constant, and N is the Avogadro number.

Brownian motion occurs in systems where the mechanisms governing energy dissipation are distinct from those of energy
storage [27,19,31]. In Brownian motion, the mean square displacement at short times grows linearly with time, i.e. Dx2 / tl.
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