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a b s t r a c t

An optimization based state and parameter estimation method is presented where the
required Jacobian matrix of the cost function is computed via automatic differentiation.
Automatic differentiation evaluates the programming code of the cost function and pro-
vides exact values of the derivatives. In contrast to numerical differentiation it is not suf-
fering from approximation errors and compared to symbolic differentiation it is more
convenient to use, because no closed analytic expressions are required. Furthermore, we
demonstrate how to generalize the parameter estimation scheme to delay differential
equations, where estimating the delay time requires attention.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

For many processes in physics or other fields of science mathematical models exist (in terms of differential equations, for
example), but not all state variables are easily accessible (measurable) and proper values of model parameters may be
(partly) unknown. In particular, detailed biological cell models (e.g., cardiac myocytes [1]) may include many variables
which are difficult to access experimentally and, in addition, depend on up to hundreds of physical parameters whose values
have to be determined. To estimate unobserved variables (as a function of time) and model parameters different identifica-
tion methods have been devised [2–14,16–18,20,19]. These methods have in common that an attempt is made to adjust the
model output (in general a function of the state variables) to some (experimentally) observed time series. To achieve agree-
ment, unobserved variables and unknown model parameters are suitably adjusted such that the model reproduces and fol-
lows the observed time series. In geosciences and meteorology (e.g., whether forecasting) this procedure is often called data
assimilation and describes the process of incorporating new (incoming) data into a computer model of the real system.

A general framework for state estimation provides, for example, the path integral formalism including a saddle point
approximation [15,16]. This formalism can be used to state the estimation problem as an optimization problem [19,12–
14,18]. If an optimization method is employed that is based on gradient descent (such as the well-known Levenberg–
Marquard method [21,22]), in general the Jacobian matrix of the cost function has to be provided, whose derivation may
be quite cumbersome (and error-prone), depending on the structure of the cost function and the underlying mathematical
model of the dynamical system. To estimate the Jacobian matrix one may approximate it by numerical derivatives (often
spoiled by unacceptably large truncation errors) or use symbolic mathematics, which requires, however, that the function
to be derived has to be given in closed form.
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A convenient alternative to both of these methods is automatic differentiation [24] where exact numerical values of the
required derivatives are computed by analyzing a given source code implementation of the cost function. As will be shown
here automatic differentiation leads in this context not only to a very flexible and efficient algorithm for computing the re-
quired Jacobian but also provides the sparsity pattern of the Jacobian which is exploited by suitable optimization methods. In
Section 2 we will give a formal description of the optimization problem to be solved for state and parameter estimation. Then
we briefly present in Section 3 the concept of automatic differentiation in the form used here. As an illustrative example we
show in Section 4 how to estimate the model parameters of the Lorenz-96 model. In Section 5 we discuss how to estimate
the delay time in delay differential equations and provide in Section 6 an example (Mackey–Glass model).

2. State and parameter estimation method

The method used here to adapt a model to a time series is based on minimizing a cost function and was introduced in Ref.
[19]. For completeness we present in the following an extended version covering also delay differential equations (DDEs).

We assume that a multivariate R-dimensional time series fgðnÞg is given consisting of N þ 1 samples gðnÞ¼̂gðtnÞ 2 RR

measured at times T ¼ ftn ¼ n � Dtjn ¼ 0;1; . . . ;Ng. For simplicity the observation times tn are equally spaced (with a
fixed time step Dt) and start at t0 ¼ 0. The estimation method can easily be extended to nonuniformly sampled obser-
vations (see Ref. [19]). Here we consider the general case of a model given by a set of coupled delay differential equa-
tions (DDEs)

dyðtÞ
dt
¼ FðyðtÞ; ysðtÞ;p; tÞ; ð1Þ

with ysðtÞ ¼ yðt � sÞ. The state vector (s) yðtÞ ¼ ðy1ðtÞ; . . . ; yDðtÞÞ
T, the delay parameter s 2 R and the U model parameters

p ¼ ðp1; . . . ; pUÞ
T are unknown and have to be estimated from the time series fgðnÞg. Estimating s can not be conducted

as estimating p, because FðyðtÞ; ysðtÞ;p; tÞ does not explicitly depend on s. In fact FðyðtÞ; ysðtÞ;p; tÞ depends on ysðtÞ which
is a function of s. We shall later come back to this topic.

Note that (1) also describes (as a special case) models given by coupled ordinary differential equations (ODEs). In this case
the right-hand side of (1) is independent of ysðtÞ and thus can be replaced by FðyðtÞ;p; tÞ (see Ref. [19] for details).

To estimate the unknown quantities a measurement function

zðtÞ ¼ hðyðtÞ;q; tÞ; ð2Þ

is required to represent the relation between model states yðtÞ and the zðtÞ corresponding to the observations fgðnÞg. This
measurement function may contain V additional unknown parameters q ¼ ðq1; . . . ; qV Þ

T that also have to be estimated using
information from the given time series fgðnÞg.

2.1. Cost function

The goal of the estimation process is to find a set of values for all unknown quantities such that the model equations pro-
vide via measurement function (2) a model times series fzðtnÞg that matches the experimental time series fgðtnÞg. In other
words, the average difference between gðtnÞ and zðtnÞ should be small. Furthermore, the model equations should be fulfilled
as well as possible. This means that modeling errors uðtÞ are allowed, but should be small. Therefore, model (1) is extended
to

dyðtÞ
dt
¼ FðyðtÞ; ysðtÞ;p; tÞ þ uðtÞ: ð3Þ

The smaller uðtÞ is the better the model Eq. (1) are fulfilled. Next, for simplicity, uðtÞ and yðtÞ will be discretized at the
times in T . This means that yðtÞ will be sampled at the same time when data are observed. With yðnÞ¼̂yðn � DtÞ¼̂yðtnÞ and
Yða; bÞ ¼ fyðnÞjn ¼ a; aþ 1; . . . ; bg the set of values of the discretized model variables can be written as Yð0;NÞ. The quanti-
ties in Yð0;NÞ have to be estimated in addition to p and q. With the same discretization we have fuðnÞg ¼ fuðtnÞg. At this
point we assume a fixed (not to be estimated) delay s ¼ k � Dt with k 2 N which is not necessarily equal to the delay param-
eter of the physical process underlying the data. This simplifies the discretization of the delayed variable to
ysðtÞ ¼ yðn � Dt � k � DtÞ ¼ yððn� kÞ � DtÞ ¼ yðn� kÞ ¼ ykðnÞ. The set of the discretized delayed variable is then
Ykð0;NÞ ¼ Yð�k;N � kÞ. Note that Yð�k;N � kÞ ¼ Yð�k;�1Þ [ Yð0;N � kÞ. Since Yð0;N � kÞ � Yð0;NÞ, Yð0;N � kÞ contains
no additional quantities to be determined. Only the variables in Yð�k;�1Þ are additional quantities which have to be esti-
mated. Typically the delay time is much shorter than the length of the time series N � Dt and hence the number of elements in
Yð�k;�1Þ is much smaller than in Yð0;NÞ. Therefore the number of quantities to be estimated does not increase much com-
pared to a model given by ODEs (with similar D and N) where Yð�k;�1Þ has not to be estimated.

The discretization of (3) is then given by

uðnÞ � Dy
Dt

����
tn

� FðyðnÞ; ykðnÞ;p; tnÞ; ð4Þ
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